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The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a
new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic
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networking & communication, which form the three key components of AloT. In addition to advancements
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and updated with new research as it becomes available. As both IoT and Al become increasingly critical to our
society, we believe that AloT is emerging as an essential research field at the intersection of IoT and modern
ALl It is our hope that this survey will serve as a valuable resource for those engaged in AIoT research and
act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.

CCS Concepts: « General and reference — Surveys and overviews; « Computing methodologies —
Artificial intelligence; - Human-centered computing — Ubiquitous and mobile computing;
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1 Introduction

The proliferation of the Internet of Things (IoT), such as smartphones, wearables, drones, and
smart speakers, as well as the gigantic amount of data they capture, have revolutionized the way
we work, live, and interact with the world. Equipped with sensing, computing, networking, and
communication capabilities, these devices are able to collect, analyze, and transmit a wide range of
data including images, videos, audio, texts, wireless signals, physiological signals from individuals,
and the physical world. In recent years, advancements in Artificial Intelligence (Al), particularly
in deep learning (DL)/deep neural networks (DNNs), foundation models, and Generative Al have
propelled the integration of AI with IoT, making the concept of Artificial Intelligence of Things
(AIoT) a reality. The synergy between IoT and modern Al enhances decision making, improves
human-machine interactions, and facilitates more efficient operations, making AIoT one of the
most exciting and promising areas that have the potential to fundamentally transform how people
perceive and interact with the world.
As illustrated in Figure 1, at its core, AloT is grounded on

three key components: sensing, computing, and networking & Computing
communication. Specifically, AloT utilizes a variety of onboard (A1)

sensors, such as cameras, microphones, motion, and physiological

sensors, to collect data from individuals and the physical world. AloT

The collected sensor data are processed by modern Al algorithms ) AT—
for a variety of tasks, such as classification, localization, and ELEINT Communication

(Al Empowered) (Al Empowered)

anomaly detection, and many others. Last, the networking & com-
munication component of AloT ensures the reliable transmission
of the sensor data and/or the computed outcomes to the cloud,
edges, or other nearby AloT devices. Compared to conventional
IoT, the computing component of AloT is concentrated on Al-oriented compute tasks. Moreover,
the sensing and networking & communication components of AloT are Al empowered. It is these
two key distinctions that allow AIoT to empower billions of everyday devices with breakthroughs
brought by modern Al

Besides advancements in the three key components, domain-specific AloT systems have been
proposed and developed across a wide range of application domains. For example, in the domain
of healthcare, AIoT systems enable remote patient monitoring, facilitate disease diagnosis on-site,
and act in the form of assistive technology that helps people with disabilities. In the domain of
augmented reality (AR), virtual reality (VR), and mixed reality (MR), AloT systems enable 3D
tracking to provide immersive user experiences. In the domain of video streaming and analytics,

Fig. 1. Overview of AloT.
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Fig. 2. Taxonomy of AloT literature.
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AloT systems have been developed to enhance video quality and optimize video processing
efficiency. All of these developed domain-specific systems demonstrate the potential of AloT on
revolutionizing a wide range of industries.

The overarching goal of this survey is to provide a systematic and comprehensive review of
AloT research. As shown in Figure 2, we organize the literature of AloT in a taxonomy consisting
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Table 1. Comparison of Different Sensing Modalities
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applications and ear positioning

of four main categories: sensing, computing, networking & communication, and domain-specific

AloT systems. Specifically,

— Sensing: Sensing serves as the foundation of AloT. In Section 2, we survey Al-empowered
sensing mechanisms and techniques in AloT that cover research directions related to mo-
tion sensing, wireless sensing, vision sensing, acoustic sensing, multi-modal sensing, earable
sensing, and Generative Al for sensing (Table 1).

— Computing: Computing is the brain of AIoT. In Section 3, we survey fundamental compute
tasks that lie at the core of AloT, covering topics related to on-device inference, offloading,
on-device training, federated learning (FL), and Al agents for AloT.

— Networking & communication: Networking & communication serve as the backbone of
AIoT. In Section 4, we survey Al-empowered networking & communication techniques
related to a variety of networks including cellular/mobile networks, Wi-Fi networks, visible
light communication (VLC), and LoRa (long range)/LoRaWAN (long-range wide area
network).

— Domain-specific AloT systems: The advancements in sensing, computing, and networking
& communication lay the foundation for the development of AloT systems designed for
specific application domains. In Section 5, we survey these AloT systems in important
application domains including healthcare and well-being, video streaming and analytics,
and autonomous driving, as well as AR, VR, and MR.

We have established a GitHub repository to organize the papers featured in the survey at
https://github.com/AloT-MLSys-Lab/AloT-Survey. We will actively maintain the repository and

incorporate new research as it emerges.

Although there are several surveys on topics relevant to AloT [21, 30, 89, 94, 168, 196, 233, 324,
329], they focus on some specific aspects of AloT. In contrast, this survey provides a holistic view
of AIoT research. More importantly, we primarily focus on literature on sensing, computing, network-
ing & communication, and domain-specific AloT systems that are built upon modern Al techniques
such as DL, foundation models, and Generative AL It is our hope that this survey along with the
GitHub repository could serve as valuable resources to help researchers and practitioners gain a

ACM Trans. Sensor Netw., Vol. 21, No. 1, Article 9. Publication date: January 2025.
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Fig. 3. Summary of topics related to sensing.

comprehensive understanding of AloT research and inspire them to contribute to this important
and exciting field.

2 Sensing
2.1 Motion Sensing

Motion sensing involves the use of motion sensors such as inertial measurement unit (IMU) sen-
sors (i.e., accelerometers, gyroscopes, and magnetometers) attached to the individuals to capture
various types of motions such as arm postures, body movements, and physical activities. As
summarized in Figure 3, depending on the sensing tasks, existing works on Al-empowered motion
sensing can be grouped into two categories: human activity recognition (HAR) and arm tracking.
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Fig. 4. lllustration of an Al-empowered motion sensing pipeline.

Human Activity Recognition. One of the most important tasks of motion sensing is HAR. Most ex-
isting HAR frameworks are limited to a few pre-defined activities and require prior knowledge or
labeled data for supervised training. To address this limitation, Liu et al. [160] introduce Lasagna,
an unsupervised learning based HAR framework that extracts common bases of human motions
in an unsupervised manner, creating a universal multi-resolution representation for common hu-
man activities. Their prototype system achieves 98.9% precision in activity classification and nearly
100% recall with about 90% precision in activity indexing. Another major limitation of existing mo-
tion sensing based HAR frameworks is that machine learning (ML) algorithms trained on specific
sensors require retraining upon any system configuration changes, such as adding a new sensor.
To address this limitation, Akbari and Jafari [5] propose a training scheme for the newly added sen-
sors to identify human activities that were previously detected by existing sensors. As another line
of research, Jeyakumar et al. [105] target the device heterogeneity problem, which encompasses
variations in sensor types, data formats, and sampling rates, leading to lower activity recognition
performance in real-life scenarios. To address this issue, they propose a DL-based HAR frame-
work named SenseHAR, which allows sensor fusion while being robust to device heterogeneity.
SenseHAR offers easy calibration for new devices, allowing seamless integration and utilization
of different devices with varying sampling frequencies, sensors, and applications. Xu et al. [289]
tackle the challenges of limited labeled data and device placement diversity in HAR. They pro-
pose LIMU-BERT, a lightweight DL-based HAR framework that employs self-supervised learning
to extract general features from unlabeled sensor data. It adopts the key principles of the BERT
framework for motion sensing and a classifier consisting of three stacked gated recurrent units
(GRUs). The model’s efficiency and ability to learn robust features make it suitable for real-time
applications on mobile devices.

Arm Tracking. Another important task of motion sensing is arm tracking, which uses motion sen-
sors to track the movements, positions, and posture of an individual’s arm. Most arm tracking
systems require attaching multiple sensors to an individual’s arm, which can limit flexibility and
have a negative impact on the overall user experience. To address this issue, Liu et al. [171] propose
ArmTroi, a real-time 3D arm skeleton tracking system that uses a single motion sensor worn on
the wrist. ArmTroi adopts an attention and recurrent neural network (RNN)-based network, which
is lightweight and suitable for mobile and real-time applications. The authors also prototype the
system on LG smartwatches, Google Glass, and Samsung Galaxy S7. ArmTroi achieves real-time
arm tracking with 92.7% gesture recognition precision, and demonstrates its efficacy through fit-
ness and gesture-based control applications. As another line of research, the differences among
accelerometers, gyroscopes, and magnetometers of the IMU sensors, as well as the heavy compu-
tation costs incurred by DL models, make it challenging to leverage all of these sensors for accurate
and real-time arm tracking. To address this issue, Liu et al. [167] propose RTAT, a real-time arm

ACM Trans. Sensor Netw., Vol. 21, No. 1, Article 9. Publication date: January 2025.
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Fig. 5. Summary of topics related to wireless sensing.

tracking system that utilizes a bidirectional long short-term memory (BiLSTM)-based multi-task
neural network to track both the orientation and location of an arm simultaneously. RTAT also
incorporates an attention mechanism to dynamically learn the importance of different IMU sensor
streams to achieve high accuracy and low latency.

2.2 Wireless Sensing

Wireless sensing uses wireless signals to sense individuals and objects in the environment in a
contact-free manner. As summarized in Figure 5, based on the frequency bands wireless signals
belong to, existing works on Al-empowered wireless sensing can be grouped into five categories:
radio frequency identification (RFID) sensing, Wi-Fi sensing, millimeter wave (mmWave) sensing,
long-term evolution (LTE) sensing, and LoRa sensing.

2.2.1  RFID Sensing. RFID is a technology that employs an RFID tag and reader, enabling the
retrieval of information from the tag using radio frequency (RF) signals emitted by the reader.
By attaching RFID tags to individuals or objects, RFID can be deployed for sensing tasks such as
localization, object tracking, and classification. Li et al. [150] utilize an RFID sensing system for
activity recognition in the medical environment by attaching RFID tags to objects in clinical set-
tings and recording the received signal strength from these tags. These collected data subsequently
serve as the input for a convolutional neural network (CNN), enabling the recognition of activities
that involve the usage of certain objects. While this approach effectively identifies activities us-
ing RFID, the received signal comprises both the line-of-sight signal and multiple reflections from
obstacles. This complicates the localization task, making it challenging to determine which signal
accurately represents the RFID tag’s location. In response to this issue, Xu et al. [288] introduce
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Fig. 6. lllustration of an Al-empowered wireless sensing pipeline.

an algorithm that transforms the RFID signal into a hologram that encapsulates the probable lo-
cation of the tag. A CNN is then employed to accurately identify the tag’s actual position within
this hologram. The accuracy of existing RFID systems is significantly impacted by the subjects
and the surrounding environmental conditions. In the context of gesture recognition, some stud-
ies consider environmental variations but often neglect the impact on the user. To address this
issue, Yu et al. [313] develop a discriminator DNN, which identifies the user and its environment
in the data. Simultaneously, it also has a gesture-labeling DNN, which predicts the probability of
gestures. Through adversarial training of both DNNs, the gesture-labeling DNN learns to create
representations that are indistinguishable from the domain discriminator, resulting in a gesture
recognizer that is independent of the user and environment. Ha et al. [80] introduce RF-EATS, a
system designed to non-invasively sense food and liquids within closed containers using passive
RFID tags. The authors attach the RFID tag to the liquids and detect whether this liquid is fake or
not. To manage the diversity in environmental conditions, the study employs variational autoen-
coders (VAEs) to synthesize multiple samples. A classifier is then trained to distinguish counterfeit
liquids using these augmented datasets. Bocanegra et al. [18] design an RFID reader system capa-
ble of simultaneous multi-tag reading via an array of deployed antennas. To determine whether an
RFID tag is within the checkout area, they also utilize a neural network, training it in a supervised
manner using data captured from the reader. Ultra-high-frequency (UHF) RFID is more appealing
to retailers because it can rapidly scan multiple RFID-tagged items, substantially increasing op-
erational efficiency; however, smartphones currently lack direct communication capabilities with
UHF RFID tags. To bridge the gap, Cui et al. [43] introduce ShakeReader, a system designed to
enhance interaction between smartphones and UHF RFID-tagged items without requiring hard-
ware modifications to existing RFID systems or smartphones. ShakeReader enables users to obtain
item-specific information by performing pre-defined gestures, such as shaking the smartphone
near the RFID tag. The system utilizes a reflector polarization model to analyze the backscattered
signal from the tag, which is affected by the smartphone’s gestures. This model accounts for both
the signal propagation and the polarization changes caused by the reflection from the smartphone,
enabling the detection of specific gestures using the RFID reader even with a single tag.

2.2.2  Wi-Fi Sensing. Wi-Fi sensing takes advantage of the ubiquitous Wi-Fi signals and their
associated hardware to detect and interpret human movements or changes in the environment.
Depending on the sensing tasks, existing works on Al-empowered Wi-Fi sensing can be grouped
into the following categories.

Human Activity Recognition. One important task of Wi-Fi sensing is HAR. The major challenge
in device-free HAR is that wireless signals are highly influenced by the specific environment and
individual characteristics of the human subject, leading to poor generalization of models across
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different subjects and environments. To address this challenge, Jiang et al. [113] propose EI for
HAR that learns domain-independent features from activity data collected in different domains. EI
accepts multiple types of input signals, including Wi-Fi channel state information (CSI). The DL
model of El incorporates an adversarial network, including a CNN-based feature extractor, a fully
connected (FC) layer based activity recognizer that predicts activity type from extracted features,
and a domain discriminator that predicts the domain. Ding et al. [50] present RF-Net, a metric-
based meta-learning approach for one-shot HAR using Wi-Fi that can perform the recognition in
a new environment with only one observation per label. RF-Net classifies a new observation in
new environments by calculating a weighted sum of all labels in the training dataset. The weights
are given by the similarity between the query observation and all data in the support dataset of
the new environment. Last, Ji et al. [107] propose SiFall to formulate the fall detection problem as
adaptive anomaly detection out of normal repeatable human activities instead of seeking features
to characterize fall activity.

3D Human Mesh Construction. 3D human mesh construction in Wi-Fi sensing refers to the creation
of 3D representations of the human body using Wi-Fi signals. Jiang et al. [114] present WiPose, a 3D
human pose skeleton construction framework that recovers human joints on both limbs and torso
of the human body using commercial Wi-Fi devices. WiPose records CSI using a single antenna
transmitter with multiple distributed receivers and designs an LSTM-based DL model that accepts
the sequence of a Doppler frequency shift profile transformed from non-overlapping CSI segments
and outputs a series of features. The learned features from LSTM are regarded as the rotation of
human body joints and fed to the forward kinematics layers to calculate the actual joint locations
based on a given skeletal structure. Wang et al. [264] present Wi-Mesh, which further improves the
3D human mesh construction task with DNN based on GRU and self-attention. Wi-Mesh leverages
a commodity three-antenna transmitter and two receivers with nine antennas in an L shape to
record CSI. Received signals at the specific antenna array can be used to calculate the 2D angle of
arrival (AoA) of the signal reflections based on phase shift, providing spatial information about the
objects and environment. Wi-Mesh generates 30 2D AoA spectrums per second and extracts only
human images by subtracting the static components in consecutive images since the human body
is moving. Wi-Mesh tracks way more body locations than WiPose and also outperforms WiPose
with an average joint location error of 2.4 cm and body vertices location error of 2.81 cm, although
using more complicated antenna arrays.

Indoor Localization. Indoor localization in Wi-Fi sensing refers to the process of using Wi-Fi signals
to determine the position of objects or individuals within indoor environments. Unlike outdoor lo-
calization, which commonly relies on the Global Positioning System (GPS), indoor localization
requires a different set of technologies and methodologies due to challenges such as the unavail-
ability of GPS signals indoors, multi-path reflection, and interference from walls and other struc-
tures. Thus, indoor localization remains a “last-mile” problem when forming a positioning system
without blind spots. Wi-Fi has been broadly utilized to address the indoor localization problem.
Ayyalasomayajula et al. [10] present DLoc, a DL-based wireless localization algorithm, and an
automated mapping platform, MapFind, which altogether forms a positioning system with a map
inspired by outdoor localization services. MapFind constructs location-tagged maps of the environ-
ment and generates training data for DLoc. Together, they solve the active indoor localization sce-
nario in which off-the-shelf Wi-Fi devices like smartphones can access a map of the environment
and estimate their position by sending packets to surrounding Wi-Fi access points with respect
to that map. While DL approaches for indoor localization rely on high-quality training samples
and are hard to adapt to varied scenarios, Zhao et al. [347] propose LocGPT, which is a specialized
generative pre-trained transformer (GPT) variant that excels in generating profound contextual
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insights, to explore the underlying principles of indoor localization. The model is configured with
36 million parameters tailored for transfer learning. To facilitate the benchmarking, training, and
transfer learning in indoor localization, they have established Ray, the first 3D indoor localization
dataset on a scale of millions, including RFID, Wi-Fi, and BLE samples. LocGPT achieves near-par
accuracy when fine-tuned with merely half the conventional dataset, which shows its superiority
in transfer learning within the indoor localization domain.

Imaging. Wi-Fi imaging exploits the capabilities of Wi-Fi signals to create images of objects or
humans in the environment. Li et al. [140] present WiSIA, a Wi-Fi imaging system that is capable
of simultaneously detecting and segmenting objects and humans within the imaging plane using
commodity Wi-Fi devices. WiSIA leverages two receivers with three orthogonal antennas sharing
the same transmitter antenna as the imaging model on the object side to record CSI that contains
the changes in the Wi-Fi signal of both amplitude and phase. WiSIA incorporates a conditional
generative adversarial network (cGAN) to refine the boundaries in an image-to-image translation
fashion. WiSIA achieves 0.9 in similarity and tagging accuracy for all five tested objects, which is
comparable to state-of-the-art computer vision and acoustics imaging, while outperforming the
state-of-the-art vision-based method in conditions with darkness or obstructions.

Gesture Recognition. Wi-Fi signals can be used in the gesture recognition task by analyzing the
variations in the Wi-Fi signal caused by human body movements. Zhang et al. [328] propose
CrossSense, a system designed to improve the scalability and efficiency of Wi-Fi-based gesture
recognition. The primary challenge addressed is the need for extensive, site-specific training
data collection, which is labor intensive and impractical for large-scale deployments. CrossSense
tackles this by using ML to generate synthetic training samples from existing measurements,
allowing these samples to be effectively used across different environments. Zheng et al. [350]
propose Widar3.0, a Wi-Fi-based zero-effort cross-domain gesture recognition system. Widar3.0
calculates the body-coordinate velocity profile of gestures from CSI at the lower signal level, which
represents power distribution over different velocities and is unique from gesture to gesture while
independent from the domain. On this basis, Widar3.0 adopts a one-fits-all model based on CNN,
GRU, and dense layers that requires only one-time training but can adapt to different data domains.
Similar to Widar3.0, OneFi [273] proposes to use velocity distribution which can be derived from
Doppler frequency shift as the unique feature that describes a gesture. It adopts a backbone based
on self-attention, noted as Wi-Fi Transformer, as the gesture recognition framework. To avoid
model retraining, OneFi adopts a lightweight one-shot learning framework based on transductive
fine-tuning and opens up a new direction for one-shot (or few-shot) learning in Wi-Fi-based
gesture recognition. Song et al. [238] present RF-URL, an unsupervised representation learning
framework for human gesture recognition tasks. RF-URL combines signal processing based RF
sensing with learning-based RF sensing by using a contrastive framework. Experimental results
indicate that the RF-URL pre-training model is capable of extracting general information for
gesture recognition and applying it effectively across different datasets. Wang et al. [258] carry
out an in-depth study on the domain variation problem in the Wi-Fi-based gesture recognition
task, which can alter multi-path effects and introduce noise into wireless signals. These variations,
including changes in the environment, can lead to significant performance degradation in Wi-Fi
sensing applications due to the resulting fluctuations in wireless signal patterns. To mitigate these
effects, the authors propose a robust framework based on conformal prediction, which quantifies
the similarity between testing and training data without the need for retraining or generating new
features. Yang et al. [302] propose SLNet, an architecture for enhancing wireless sensing applica-
tions through the integration of DL and spectrogram analysis. SLNet utilizes neural networks to
generate super-resolution spectrograms, addressing the limitations of traditional time-frequency
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uncertainty. This design improves the accuracy of Wi-Fi-based gesture recognition, human
identification, fall detection, and breathing estimation tasks. Experiments demonstrate that SLNet
achieves superior performance with reduced computational demands, making it suitable for
practical deployment on edge devices. Chi et al. [38] introduce RF-Diffusion, a novel approach to
generating high-quality, time-series RF data using diffusion models. The proposed methodology
involves training RF-Diffusion with a real-world dataset to generate synthetic RF signals of
the designated type. These synthetic samples are then integrated with the original dataset and
collectively employed to train the wireless sensing model. The authors highlight that RF-Diffusion,
when used as a data augmentation tool, leads to substantial improvements in Wi-Fi-based gesture
recognition accuracy. This enhancement is attributed to the model’s ability to produce diverse
and high-quality RF data that enriches the training datasets of existing systems.

Respiration Monitoring. Wi-Fi signals can be used for respiration monitoring by analyzing the sub-
tle variations in wireless signals caused by the movement of a person’s chest during breathing.
Existing methods of respiration monitoring are limited by short sensing ranges, susceptibility to
noise, and issues with phase offset stability. To overcome these limitations, Zeng et al. [320] in-
troduce FarSense, a system for enhancing Wi-Fi-based respiration sensing. FarSense leverages the
CSI ratio from two antennas to overcome the limitations of existing methods that rely on individ-
ual CSI readings. By using the CSI ratio, FarSense cancels out most of the noise and phase offset
issues, significantly extending the sensing range. The system combines the amplitude and phase
information of the CSI ratio to address the “blind spots” problem and improves the sensitivity
of detecting subtle respiration signals. In another work, Zeng et al. [319] present MultiSense, a
system for accurately monitoring the respiration patterns of multiple individuals simultaneously
using commodity Wi-Fi devices. MultiSense overcomes the challenges faced in existing methods by
leveraging multiple antennas on Wi-Fi devices and modeling the multi-person respiration sensing
problem as a blind source separation problem. MultiSense cancels out time-varying phase offsets
and removes background static signals, allowing for robust separation and continuous monitoring
of detailed respiration patterns.

2.2.3 mmWave Sensing. mmWave sensing refers to the use of electromagnetic waves with
wavelengths in the millimeter range, typically between the 30 and 300 GHz frequency band, for
a variety of sensing tasks. The high frequency, short wavelength, and broadband capacity make
mmWave more sensitive to minor reflection distance variations, and thus can provide finer sens-
ing resolution. At the same time, mmWave has limited penetration capabilities, so it can easily be
attenuated or blocked by obstacles. As such, mmWave sensing often requires a direct line of sight
between the transceivers and the sensing target. Depending on the sensing tasks, existing works
on Al-empowered mmWave sensing can be grouped into the following categories.

Human Activity Recognition. The capability of mmWave signals to capture micro-motions and
micro-vibrations of different human body parts makes it feasible for the task of HAR. Pegoraro
et al. [213] introduce SPARCS for mmWave-based HAR. It focuses on extracting micro-Doppler
signatures of human movement from irregular and sparse channel impulse response samples.
This approach leverages the inherent sparsity of the mmWave channel to reduce sensing over-
head drastically while integrating seamlessly with existing communication protocols. By formu-
lating micro-Doppler extraction as a sparse recovery problem, SPARCS achieves high-quality HAR
with significantly lower overhead compared to existing methods, demonstrating its applicability
and efficiency in real-world scenarios. While research on introducing DL to mmWave-based HAR
achieves promising performance, collecting and labeling mmWave datasets for such tasks is dif-
ficult and expensive. To close the gap, Zhang et al. [339] present SynMotion, which synthesizes
mmWave signals at high quality using widely available vision-based human motion datasets with
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the coordinates of body skeletal points and designs a few/zero-shot synthetic-to-real transfer learn-
ing framework for downstream HAR.

3D Human Mesh Construction. The mmWave signals can also be used for 3D human mesh con-
struction by providing detailed information about the human body contours and structure. Xue
et al. [298] present mmMesh, a DL-based real-time 3D human mesh construction framework to
model the moving subject with commercial portable mmWave devices. mmMesh utilizes range
and angle information to remove noisy reflections from static objects in the IF signals collected by
commercial devices and generate the 3D point clouds as input to the DL model. Kong et al. [123]
propose m3Track to enable simultaneous tracking of the 3D postures of multiple users leveraging
a single commercial mmWave device. m3Track obtains the range-Doppler profile of the IF signals
by range-FFT and Doppler-FFT that contains information on the users and background objects. It
distinguishes multiple users and backgrounds by sliding a convolutional kernel along the range
bins of the range-Doppler profile and performing convolution operations to detect the ranges that
contain users. Xue et al. [297] develop M*esh for multi-subject 3D human mesh reconstruction. The
tracking scheme of M*esh integrates techniques adopted by mmMesh and m3Track, including sub-
ject detection, 3D point cloud generation for each subject, and per-subject mesh reconstruction.
Similarly, Xie et al. [278] propose mm3DFace to move toward reconstruction of the human face. It
proposes to leverage commercial mmWave radar to reconstruct 3D human faces that continuously
express facial expressions in a passive manner. mm3DFace captures human face information from
the recorded IF signal. By applying range-FFT to the IF signal and AoA calculation, it obtains the
range profile, azimuth profile, and elevation profile, which together form a range-angle profile in
the 3D space. The 3D profile captures the side view and frontal view of human faces.

Voice Reconstruction. Voice reconstruction refers to the process of capturing and reconstructing
the human voice by detecting subtle vibrations with mmWave signals. Xu et al. [284] propose
WaveEar, which leverages mmWave devices to enable noise-resilient speech sensing for a voice-
user interface in environments with audible and inaudible interference. The authors conducted
an in-depth study of human voice generation to obtain insights into voice vibration caused by
the integrated effort of three physiological organs: lungs, vocal cords, and articulators. WaveEar
designs a low-cost mmWave probe that employs a phased directional array to locate the speaker by
throat vibration and then transmits mmWave signals toward the near-throat region of the speaker
and processes the reflected signal for voice reconstruction.

Object Recognition. The broadband nature of mmWave makes it also suitable for object recognition.
He et al. [87] present Fusang, a system that adopts commercial off-the-shelf mmWave devices for
accurate and robust 3D object recognition. Fusang leverages the large bandwidth of mmWave
radars to capture a unique set of fine-grained responses reflected by objects with different shapes.
It generates the high-resolution range profile (HRRP) from the IF signal and constructs two novel
graph-structured features, as the HRRP data of different objects in the spectrum is not always
distinguishable. Fusang extracts the set of formants that denotes the peaks in the HRRP envelope
and iteratively bisects the frequency bands to a point when there is no more than one formant
falling in each subband to build a binary tree with subbands that contain formants as leaf nodes.

Indoor Mapping. Indoor mapping using mmWave involves creating detailed maps or spatial repre-
sentations of environments using the data obtained from mmWave radar sensors. State-of-the-art
mapping approaches are mainly based on optical sensors, such as LIDAR and cameras. One of the
advantages of mmWave over optical sensors is its ability to penetrate through certain materials
and resilience to poor illumination. Lu et al. [178] present milliMap, which adopts a single-chip
mmWave radar for dense indoor map generation and simple object annotation in low-visibility en-
vironments under emergency situations. milliMap adopts cGAN supervised by a co-located LIDAR
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to generate dense patches similar to LiDAR ground truth from mmWave scans. In this way, mil-
liMap overcomes the sparsity and multi-path noise of mmWave signals. It also identifies different
objects from the spectral response of mmWave reflections by a CNN-based semantic recognizer.

Temperature Sensing. Temperature sensing refers to the continuous or periodic process of
measuring and recording temperature levels in a given environment, object, or individual. While
most wireless temperature monitoring solutions are not cost-effective and generate electronic
wastes, ThermoWave [32] enables ecological, batteryless, and ultra-low-cost wireless temperature
monitoring using mmWave signals. Specifically, ThermoWave is designed based on the principle
of thermal scattering effect of mmWave. Specifically, it attaches ThermoTags made of cholesteryl
material inked film or paper which aligns the molecular patterns at different temperatures and
senses the temperature-induced pattern change by scattered mmWave signals. The ThermoTags
are of low cost (<$0.01 per tag). ThermoWave adopts an mmWave-radar-based ThermoScanner to
receive the temperature-modulated mmWave scattering and extract thermal features from it.

2.24 LTE Sensing. LTE sensing leverages the capabilities of LTE wireless broadband com-
munication technology for the task of sensing. Feng et al. [62] explore the use of LTE signals
for pervasive sensing applications both indoors and outdoors. Their work aims to address the
limitations of existing wireless sensing technologies, such as Wi-Fi, which are constrained by
coverage and performance issues. Specifically, the authors propose to leverage the widespread
and diverse LTE infrastructure to achieve comprehensive and reliable sensing without affecting
LTE data communication. Through advanced techniques to mitigate interference and noise, the
authors demonstrate the effectiveness of LTE sensing in two key applications: indoor respiration
monitoring and outdoor traffic monitoring. In a different work, Feng et al. [63] leverage the
infrastructure of LTE base stations to provide a cost-effective and energy-efficient solution
for the application of soil moisture monitoring. By utilizing commercial off-the-shelf hardware,
including software-defined radios and a Raspberry Pi, the proposed system achieves high accuracy
comparable to high-end sensors but at a fraction of the cost. They have deployed their prototype
system and examined its robustness across various soil types and conditions, demonstrating its
potential for applications in precision agriculture and environmental monitoring.

2.25 LoRa Sensing. The long-range, low-power characteristics of LoRa networks make it pop-
ular among large-scale remote-area IoT applications. However, the use of LoRa for sensing tasks is
yet to be explored due to challenges related to interference, sensing range, and many more. To ad-
dress these challenges, Xie and Xiong [276] introduce Sen-fence, which explores advanced signal
processing techniques that maximize movement-induced signal variations, thereby increasing the
sensing range. Additionally, the authors introduce a novel “virtual fence” method, which confines
sensing activities to a specific area of interest, thereby reducing the impact of environmental noise
and interference. Sen-fence achieves a 50-m range for fine-grained human respiration detection
while effectively managing interference for practical LoRa sensing applications. However, the pro-
posed method in Sen-fence is effective for detecting tiny movements like respiration but struggles
with larger movements such as human walking. To address this issue, Xie et al. [275] introduce
ChirpSen, a system designed to enhance the sensing range of LoRa-based localization by fully
exploiting the properties of chirp signals. ChirpSen employs a chirp concentration scheme that
concentrates the power of all signal samples in a LoRa chirp at one timestamp, thus increasing the
signal power as well as the sensing range. Real-world experiments demonstrate that ChirpSen sig-
nificantly enhances detection capabilities, extending the range for monitoring human respiration
at a distance of 138 m and tracking a walking human at up to 210 m.
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Fig. 7. lllustration of an Al-empowered vision sensing pipeline.

2.3 Vision Sensing

Vision sensing involves the use of vision sensors such as RGB cameras, depth cameras, and near-
infrared (NIR) image sensors to capture and analyze visual information for various sensing tasks.
As summarized in Figure 3, depending on the sensing tasks, existing works on Al-empowered
vision sensing can be grouped into five categories: HAR, image enhancement, object detection,
eye tracking, and pose estimation.

Human Activity Recognition. DL-based models used in vision sensing for HAR can be computa-
tionally demanding, posing a significant challenge when it comes to execution on mobile and IoT
devices. Moreover, vision systems that rely on RGB cameras are intrinsically susceptible to privacy
leakage by hacking. To tackle this problem, Shim et al. [234] choose to use an NIR image sensor
to monitor human activities that inherently does not contain enough data to reveal personal iden-
tity. Although the NIR sensor loses a lot of spatial information, the authors have demonstrated
that the temporal information and pixel-wise computation over DNN are enough to recognize the
performed activities.

Image Enhancement. Image enhancement involves manipulating the image itself to improve its
quality. A key technique within this area is super-resolution, which aims to increase the resolu-
tion of the image. However, executing this task on-device poses significant challenges due to the
immense computational complexity and substantial storage requirements. To mitigate these is-
sues, Lee et al. [134] employ two distinct compressed DNNs and schedule their operations across
the CPU, GPU, and digital signal processor (DSP). Captured images by vision sensors are often
transmitted over low-power, unreliable IoT networks. However, traditional methods such as JPEG,
designed for use on reliable networks, are still commonly employed for image transmission. To
efficiently transmit and receive high-quality image data over this unstable network, Hu et al. [96]
find the optimal encoder and decoder pair of DNN by employing neural architecture search (NAS)
methods. Motion blurs on IoT devices are a severe problem while capturing the image. Existing so-
lutions to this problem often necessitate additional hardware or have high computational demands
that are ill suited to microcontrollers. To solve this problem, Lee [135] adopts depth-independent
convolution operations on DNN to estimate the blur kernel. This predicted kernel is then applied
to the blurred image to recover the original, clear image. Additionally, the algorithm employs a ma-
trix transformation, converting it to a Toeplitz matrix. This transformation yields computational
advantages, making it particularly efficient for deployment in extremely resource-constrained mi-
crocontroller environments.
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Object Detection. Object detection is one of the most fundamental and important tasks in vision
sensing. Recognizing faces in crowded environments is a critical challenge, particularly in applica-
tions like finding missing children. Existing DNN methods suffer from the low-resolution problem
of the detected face. To solve the problem, Yi et al. [309] design a three-step multi-DNN pipeline
consisting of detection, clarification, and recognition. During the clarification phase, the system
recovers missing elements of the low-resolution image by fine-tuning it with the target’s face. The
research by Sami et al. [223] leverages a time-of-flight (ToF) sensor embedded in mobile phones
to locate and identify concealed spy cameras. Conventional methods typically necessitate manual
interpretation to discern these hidden devices. However, the incorporation of a ToF sensor enables
the system to detect distinctive reflections emitted by spy cameras. Following this, DL techniques
are deployed to filter out false positives from the detected images and effectively pinpoint the hid-
den cameras in an automated manner. Sun et al. [241] have studied the use of a smartphone camera
to detect counterfeit liquid products, eliminating the need for additional hardware. The method
tracks the movement of bubbles in the liquid using Faster-RCNN and U-Net and verifies the prod-
uct’s authenticity using the AdaBoost algorithm. Depth-contained images acquired from depth
sensors can be employed in the detection and classification tasks of DNN [193, 280, 281]. These
methods are effective compared to RGB cameras in low-light environments. Xie et al. [280, 281]
employ the indirect time-of-flight (iToF) depth camera to capture the high-resolution texture depth
map, whereas Mithun et al. [193] use Kinect for Xbox One to achieve it. In particular, in the con-
struction of the depth map, Xie et al. [281] employ an autoencoder that exploits the phase compo-
nents of the iToF camera, whereas in another work, Xie et al. [280] employ an additional distorting
infrared source and uses the energy difference of the signal depending on the texture.

Eye Tracking. Exploiting eyewear devices for eye tracking presents unique challenges due to
their limited computational resources and the variability in eye characteristics across different
individuals. To address this issue, Wu et al. [269] design EMO, a personalized DNN classifier that
classifies emotions using images captured from a single eye by the eyewear. Likewise, Lan et al.
[129] employ eyewear devices for extracting gaze data and aim to use it for cognitive context
sensing. However, this approach also suffers from the diversity of people. To address this issue,
this research adopts the few-shot learning method. These allow for rapid adjustment to new
environments when operating a spatial-temporal graph-based DNN system, which is used to
classify activities from gaze information. Tracking the gaze from the eye is highly demanding
because of the small size of the iris and subtle hints concerning the directions. Existing commercial
systems are expansive, whereas low-cost RGB camera approaches suffer from the insufficiency of
datasets. To effectively track eye gaze, Cao et al. [25] have developed a geographical gaze model
that maps the relationship between the smartphone screen and the iris boundary, which contains
the gaze directions. To accurately extract the iris boundary over the eye, the authors employ
U-Net and further refine the resulting pixels to enhance the accuracy of eye tracking.

Pose Estimation. Pose estimation is the process of determining the position and orientation of the
human body in a 3D space using visual inputs. Zhang et al. [330] introduce MobiPose, a system de-
signed to achieve efficient and accurate real-time multi-person pose estimation on mobile devices.
MobiPose introduces a motion-vector-based approach that tracks human proposals across consecu-
tive frames to eliminate the need for repeated human detection. It also introduces a mobile-friendly
model employing lightweight, multi-stage feature extractions utilizing heterogeneous computing
resources (CPU and GPU) to perform pose estimation in parallel, thereby minimizing latency. Tra-
ditional 60-Hz cameras have limited capabilities when it comes to tracking delicate finger move-
ments due to their low sampling rate. Consequently, the performance of 3D hand pose reconstruc-
tion displays restricted accuracy. To address this issue, Zhang et al. [338] have developed a 3D
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hand pose reconstruction method that utilizes the camera and wearable gloves embedded with
LEDs on the fingertips and wrist. The camera captures the strip effect of the rolling shutter from
the LEDs on the gloves, and a CNN identifies the location and bounding box of these strips. This
information is then used to construct a 3D representation of the hand posture.

2.4 Acoustic Sensing

Acoustic sensing involves utilizing acoustic sensors to capture, measure, and analyze acoustic sig-
nals for sensing purposes. As summarized in Figure 3, depending on the sensing tasks, existing
works on Al-empowered acoustic sensing can be grouped into four categories: localization, move-
ment tracking, emotion recognition, and keyword and event detection.

Localization. Localization using acoustic sensing refers to the process of determining the position
or location of objects or sources of sound using sound waves. Mao et al. [185] introduce Deep-
Range, which investigates the limitations of traditional signal processing methods in localization
tasks utilizing aquatic signals, particularly in scenarios with a low SNR environment. They
pose the question of whether DNNs can automatically learn features from received acoustic
signals to estimate distance, potentially surpassing the performance of conventional signal
processing algorithms devised by domain experts. The study introduces a DNN-based ranging
system, which directly employs raw acoustic signals without feature extraction and indicates
superior performance compared to established signal processing approaches. Conventional
methodologies for sound source localization require multiple microphone arrays, which is
impractical for tiny devices. Addressing this, Owlet [67] place a microphone inside the stencil
with sound holes. The incoming sound through these apertures indicates the direction based on
hole patterns. Nevertheless, the approach remains susceptible to environmental factors, such as
reflective wall signals. To mitigate this, the authors employed a CNN to estimate the direction
of arrival, trained on a synthetic dataset representative of various environments. Yang and
Zheng [301] introduce DeepEar, a DL-based framework to improve sound localization using only
two microphones, particularly in scenarios with multiple sound sources. Drawing inspiration
from the biological function of human ears, which shape sound waves to provide more spatial
information, the authors design a neural network architecture that simulates human auditory
processing. This includes a gammatone filter bank mimicking the cochlea’s role by transforming
audio into the time-frequency domain, followed by an autoencoder that extracts high-level sound
representations. These features are then utilized by a DNN to pinpoint sound locations accurately.

Movement Tracking. Movement tracking using acoustic sensing involves detecting and monitoring
the movement of objects or individuals through the analysis of sound waves. Acoustic signals, as
they propagate through the human body, undergo a range of transformations. By performing a
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comprehensive analysis of these signal changes, we can effectively track the movements. Sun et al.
[244] introduce VSkin, a system that can detect finger movement on mobile devices using acous-
tic signals. VSkin utilizes both structure-borne and air-borne sounds to detect touch and measure
finger movements on all surfaces of a device, not only limited to the touchscreen. The existing
method of movement tracking frequently encounters challenges such as low SNR, interference,
and mobility, which may affect the accuracy of the tracking. To overcome these issues, Mao et al.
[186] employ the 2D MUSIC algorithm [266] to produce joint of distance and AoA profiles derived
from hand motion. Leveraging this profile, an RNN is utilized to precisely track both the distance
and AoA of hand movements on a room scale. Chen et al. [34] present Ipanel, a system that uses
acoustic signals created by finger movements on a hardwood tabletop to extend mobile device in-
teractions beyond the small screen and onto surrounding surfaces. Unlike traditional finger track-
ing systems that use a fixed-frequency acoustic signal, Ipanel tracks the dynamically changing
frequencies of acoustic signals produced when fingers slide on a surface. Ipanel extracts distinc-
tive features from both the spatial-temporal and frequency domain characteristics of the acoustic
signals, converting them into images, which are then processed by a CNN for finger movement
recognition. The system supports recognition of common gestures like clicks, flips, scrolls, and
zooms, as well as handwriting recognition of numbers and alphabets, with high accuracy. Acous-
tic signals can capture human breathing patterns, with a key advantage being the elimination
of specialized wearable sensors. Leveraging this, Xu et al. [296] design a model to monitor the
drivers through accurate breathing pattern extraction. The initial stage involves the isolation of
environmental driving noise, which is then followed by the reconstruction of detailed breathing
waveforms via the application of GAN. Li et al. [145] present FM-Track, a system for tracking
multiple moving targets using acoustic signals without physical contact. The authors propose a
chirp-based signal model that integrates range, velocity, and angle information from the reflected
signals to accurately determine the position and movement of each target. FM-Track can track up
to four targets simultaneously within a 3-m range, demonstrating its efficacy through experiments
on both smartphones and smart speakers.

Fu et al. [65] employ ultrasound signals emitted from a smartphone to detect the articulatory
movements of the mouth. Using the reflected signals from these movements, the study success-
fully reconstructs audible speech with a DNN named SiVoNet by training the network supervised
way using paired audible speech. They implemented a prototype for a comprehensive evaluation,
using a Samsung Galaxy S8 to validate performance on a commercial smartphone platform. The
evaluation results show that SiVoNet can reconstruct speech with a character error rate as low as
7.62%, outperforming state-of-the-art acoustic-based approaches. Experience [144] investigates the
challenges and solutions related to the deployment of acoustic sensing system-based movement
tracking in real-world scenarios. The authors identify several critical issues, such as audible sound
leakage, high power consumption, and performance degradation due to device mobility. Li et al.
[144] propose a power control mechanism by dynamically adjusting the transmission power and
switching between idle and active states based on detected activity to reduce power consumption.
They built a prototype of their proposed power control schemes for hand tracking on a Samsung
S9+ smartphone, reducing average power consumption from 22% to 10% over 2 hours.

Emotion Recognition. Emotion recognition through acoustic sensing involves analyzing voice and
sound patterns to determine the emotional state of a speaker. Lane et al. [131] present DeepEar,
a mobile audio sensing framework to perform audio inference tasks such as ambient scene
analysis, emotion recognition, and stress detection. DeepEar is designed to address the challenge
of diverse and noisy acoustic environments that mobile users encounter. The framework consists
of multiple DNNs, each specialized in a specific audio sensing task, and employs advanced
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Fig. 9. lllustration of an Al-empowered multi-modal sensing pipeline.

DL techniques for pre-training and fine-tuning. Georgiev et al. [69] address the challenge of
performing multiple audio analysis tasks, including emotion recognition, on resource-constrained
mobile and embedded devices. Existing solutions for audio sensing focus exclusively on the
operation of a single DNN. However, Georgiev et al. [69] have shown that by sharing layers
among different audio task DNN models, it can reduce its computation cost while achieving
comparable accuracy. Microphone variability, which refers to differences in audio data quality and
characteristics recorded by different microphones, can significantly impact the robustness and
accuracy of audio-sensing tasks. To address this challenge, Mathur et al. [187] design Mic2Mic,
which leverages cycle-consistent generative adversarial networks (CycleGANs) to ensure that
emotion recognition and other audio sensing tasks can be performed accurately across different
devices. Mic2Mic learns a translation function between audio data recorded from different
microphones, effectively reducing the domain shift caused by microphone variability.

Keyword and Event Detection. Keyword detection in acoustic sensing involves the identification
and recognition of specific words or phrases from audio signals. Selecting the device with the
best audio quality leads to clearer and more distinguishable audio features, which are critical for
accurate keyword recognition. Min et al. [192] introduce a real-time assessment framework to
determine the optimal audio input from various devices. This model routinely evaluates potential
devices and selects the most suitable one for operation within the execution duty cycle. The
authors introduced two models for this assessment: probability-based and data-driven DNN
models. The model demonstrates that it achieves higher accuracy while consuming less energy
than its baseline counterparts in keyword detection tasks. Event detection refers to the process
of identifying and recognizing specific events or activities based on sound signals captured
by acoustic sensors. Traditional systems often miss parts of longer-duration events due to
intermittent power, resulting in incomplete audio data. To mitigate these challenges, SoundSieve
[198] employs a regression neural network to predict the importance of upcoming audio segments
and captures only the most relevant segments of an audio clip. With this predictive capability, the
device can decide whether to enter a sleep cycle or remain awake to capture the signal.

2.5 Multi-Modal Sensing

Multi-modal sensing involves the use of more than one sensing modality where the key advantage
is its ability to combine distinct information provided by each of the included sensing modalities.
At the same time, determining which sensing modalities to include, and how to combine them
effectively, are highly dependent on the specific application. As summarized in Figure 3, depend-
ing on the sensing tasks, existing works on Al-empowered multi-modal sensing can be grouped
into five categories: HAR, human and object identification, tracking, localization, and speech
enhancement.
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Human Activity Recognition. Using multi-modal sensing, HAR integrates data from different
sensory modalities to detect and identify human activities. Traditional ML strategies typically
employ one of two methods for sensor fusion: feature concatenation and Ensemble classifiers.
Feature concatenation merges modalities but neglects inter-sensor correlation. Ensemble classi-
fiers, however, uses separate classifiers but compromise intra-sensor correlation by fusing outputs
later. Radu et al. [215] propose a modality-specific architecture that can learn both inter and
intra-sensor correlation for the task of HAR. The network comprises multiple distinct branches,
each dedicated to a specific modality. The outputs from these branches are then combined using
FC layers. The task of HAR requires high accuracy with minimal inference latency. In multi-modal
environments where sensors transmit data to a computing device, network fluctuations can cause
asynchronous arrival of modalities. Straightforward approaches, such as waiting for delayed
modalities or ignoring them, compromise both latency and accuracy. To address this challenge, Li
et al. [149] introduce speculative inference. Instead of waiting for delayed sensor data, it imputes
the missing values and utilizes this generated data for subsequent inferences. If the accuracy falls
below acceptable levels, the system executes a rollback of its results and reinitiates the inference
process. Leite and Xiao [137] propose reducing the number of sensors used to lower computational
demands, although this can potentially degrade accuracy. To mitigate this, the authors introduce
a pipeline that prioritizes sensors based on their impact on accuracy. During the model training
phase, sensors that have minimal or negative effects on accuracy are excluded. This approach
significantly reduces memory usage and inference time while maintaining high accuracy in HAR.
In HAR, when a model trained in one domain is deployed in another domain, a degradation in per-
formance occurs due to differences between the two domains. In multi-modal environments, these
challenges are amplified due to the presence of additional variable factors. To tackle this issue, Hu
et al. [97] propose VMA, which transfers the DNN from one domain to another in the presence
of multiple domains and modalities. The key idea is that changing one factor would have higher
accuracy than changing multiple factors. Thus, VMA identifies pairs of domains wherein only
one factor differs between them. Leveraging these pairs, it finds a path to effectively transition
from one domain to the desired target domain by sequentially modifying only one factor at a time.
Ouyang et al. [204] propose Cosmo, a two-stage fusion learning system for enhancing HAR using
multi-modal data when labeled data are limited. In the initial stage, Cosmo leverages unlabeled
data to discern consistent information, which denotes shared information that is uniformly
present across different modalities. During the subsequent stage, Cosmo focuses on capturing
complementary information, identifying the distinct and unique characteristics inherent to each
modality, and leveraging the labeled data. As such, Cosmo achieve 26.73% accuracy compared to
the supervised fusion learning baseline. Last, Zhang et al. [344] introduce CMA, a method for HAR
by associating wearable IMU sensors with structural vibration signals. In CMA, all data is initially
aligned and segmented according to the timestamp. Then, each data segment detects the activity
in their data using a threshold. Additionally, the system utilizes a temporal convolutional network
to determine if the data segment sourced from distinct modalities points to an identical activity
and individual.

Human and Object Identification. Human and object identification involves the ability to detect,
recognize, and categorize individuals, objects, or both. One effective method for identifying
individuals is analyzing their gait, as it constitutes a unique characteristic for each person. While
some studies utilize camera-based techniques for this purpose, they often struggle in low-light
conditions and require the subject to be within the camera’s field of view. Additionally, RF signals
offer advantages like penetration through obstacles and not being affected by lighting conditions,
but their accuracy may decrease when there is a significant difference between the training and
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testing environments. To tackle this problem, Korany et al. [125] introduce XModal-ID, a gait-
based identifying system using Wi-Fi signal and video footage. It determines whether a person
within a Wi-Fi area is the same as the individual captured in the video footage. From the video, it
creates the 3D mesh of a human and simulates how the Wi-Fi signal would be after the signal is
reflected from a 3D mesh human. This Wi-Fi signal implicitly contains gait information since it is
reflected by the human body joints while moving. Thus, by comparing the simulated Wi-Fi data
with the real-world Wi-Fi signal captured in the Wi-Fi area, it can identify whether the two sets
of data correspond to the same individual or not. Liu et al. [170] present an innovative system
called RF-Camera, which combines RFID and computer vision techniques to recognize human
interactions with physical objects in environments involving multiple subjects and objects. To
achieve this goal, RF-Camera uses the Kinect DK system, which is equipped with an RGB camera
and depth camera to detect the human and its relevant hand trajectory. At the same time, an RFID
system is used to identify the items and track their movement. Current vision-based methods
for video scene analysis excel at recognizing and identifying objects and people (i.e., extrinsic
details). Nevertheless, they cannot be used when it comes to capturing intrinsic details, such as
discerning the state of a washing machine. To bridge this gap, Capricorn [265] integrates both RF
and vision sensors, aiming to understand a scene’s external and internal details comprehensively.
Specifically, the camera provides data about types of objects and their respective bounding boxes.
Concurrently, UWB radar detects object vibrations, leveraging this data to infer the internal states
of these objects. Liu et al. [161] propose Vi-Fi, which utilizes an RGB-D camera and smartphones to
associate multiple individuals with their respective smartphone identifiers. It accomplishes this by
capturing bounding box information and depth data from the RGB-D camera, as well as IMU sen-
sor data and Wi-Fi fine timing measurements from smartphones. Subsequently, this diverse data is
fed into LSTM models, and the output features are combined to generate an association score be-
tween the smartphones and their bounding boxes. Vi-Fi achieves an association accuracy of 81% in
real time and 91% in offline processing, demonstrating its effectiveness in identifying humans and
objects in complex environments. When it comes to object identification, capturing the material
and shape information is of vital importance. mmWave signals can obtain rich information from
the reflecting surfaces thanks to its broadband signals. However, the reflections from stationary
objects contain less information than vibrating objects. To exploit its capability to the fullest,
RFVibe [228] fuses mmWave signals with acoustic signals for contactless material and object
identification. In particular, it plays an audio sound toward the object to generate micro-vibrations
in the object and shines an mmWave radar signal on the object at the same time. By analyzing the
physical properties of the reflected wireless signal, these micro-vibrations can be captured. RFVibe
extracts several features, including frequency features, power features, and damping features.
RFVibe adopts a CNN-based neural network to enable accurate identification of these features
under different setups and locations. The neural network consists of three feature heads that
transform features from different sources into a common latent space and a classification head that
takes in the intermediate feature maps and outputs the probability distribution of possible classes.

Tracking. Tracking humans or objects has been explored using various modalities. One method
is utilizing the mmWave radar because it offers spatial information and the ability to construct
data points in space. However, this sensor struggles in scenarios involving rapid movements.
To address this limitation, Lu et al. [177] introduce milliEgo, a robust egomotion estimation
system that combines the capabilities of the IMU sensor and mmWave radar. To integrate the
information from these two sensors, the authors proposed a two-stage intra- and inter-sensor
cross-self-attention mechanism, which interchangeably learns how to compensate for one another
sensors during each step. Consequently, this approach outperforms its counterparts, which solely
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rely on the IMU sensor, combining RGB with IMU and integrating depth information with IMU.
Another combination of mmWave radar and the IMU sensor has also been explored for tracking
interpersonal distances by ImmTrack [44]. Since it requires tracking multiple individuals, IMU
data from multiple individuals’ smartphones and the corresponding mmWave data are generated.
To associate them, cosine similarity metrics are employed. Once associated, the IMU data, initially
in its local coordinate system, is translated to the mmWave’s global coordinate system, making it
suitable for monitoring inter-personal distances.

Localization. Multi-modal sensing can also enhance the performance of localization. For example,
Boroushaki et al. [19] introduce RFusion, a multi-modal localization system that utilizes both RF
and vision sensing modalities. When estimating a location using a single RF antenna, there is a
broad potential location area. Introducing an RGB-D camera can narrow down this area by lever-
aging depth information. Nevertheless, even with this refinement, multiple candidate locations
remain, necessitating measurements from various positions. By optimizing this measurement
trajectory through reinforcement learning (RL), RFusion achieves centimeter-level accuracy, im-
proving travel distance efficiency by twice as much compared to its baseline. As another example,
ELF-SLAM [180] proposes to combine both motion sensing and acoustic sensing for localization.
IMU sensor inherently is susceptible to noise and biases that can accumulate over time. The
authors propose to leverage the acoustic information emitted and captured by smartphones. As
this acoustic data is reflected by surfaces, the captured echoes carry distinct spatial information
based on their location. This enables precise indoor location alignment by compensating the
inaccurate misaligned parts of the IMU sensor with spatial information in the acoustic data.

Speech Enhancement. Speech enhancement refers to the process of improving the quality and intel-
ligibility of speech signals, typically in the presence of noise or other degrading factors. Traditional
research relying solely on audio data often requires multiple microphone arrays and is significantly
influenced by the environment in which the data is captured. While multi-modal solutions exist
that combine camera-captured lip movements with audio, their accuracy degrades in low-light con-
ditions. Consequently, Sun and Zhang [243] introduce UltraSE, a system that combines ultrasound
signals with audible sound to enhance the user’s speech. The user holds the phone near the mouth,
and it emits ultrasound. Since this signal is reflected by the lip, it contains the articulation gestures
that do not contain the noise of the audible sound. By fusing this noise-free ultrasound data with
audio data in a cGAN-based DNN, it produces de-noised audio output. However, this method has
a limitation in terms of short working distances. Additionally, it has to hold the phone to capture
the data. To address this issue, Liu et al. [169] design Wavoice, which aims to remove noise from
the audio signal using mmWave that can operate long distances. They discovered a strong corre-
lation between mmWave and audio signals, as both carry information about vocal fold vibrations,
making them suitable for fusion. By integrating these two, the audio data offsets the motion inter-
ference inherent in mmWave signals, whereas the mmWave data counteracts the noise limitations
of the audio signal. As a result, Wavoice surpasses its audio-only speech recognition baseline more
than 20x. Although Wavoice successfully separates the clear speech, it has the constraint that it
needs the mmWave radar device. To address this issue, by narrowing the focus to scenarios involv-
ing head-mounted wearables like wireless earbuds or VR/AR headsets, VibVoice [88] leverages
the IMU sensors that most of these devices are equipped with. An IMU accelerometer attached to
the head is capable of detecting vibrations generated by the speaker’s voice via bone conduction
through the skull, devoid of any external environmental noises. To integrate the IMU and audio
modalities, they employ encoder-decoder architectures. The encoder extracts essential features
from each modality and merges them while the decoder subsequently reconstructs human speech.
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Fig. 10. llustration of an Al-empowered Earable sensing pipeline.

2.6 Earable Sensing

Earables are wearable devices attached to ears in the form of headphones or wireless earbuds. As
summarized in Figure 3, depending on the sensing tasks, existing works on Al-empowered earable
sensing can be grouped into three categories: facial expression sensing, user authentication, and
sound localization.

Facial Expression Sensing. Conventional methods for capturing facial expressions are primarily
counted on video cameras. However, video cameras are limited in low-light environments and
pose substantial risks of privacy infringement. In contrast, earables avoid such limitations and
have demonstrated significant promise for a variety of facial expression sensing tasks. For ex-
ample, Wu et al. [271] propose BioFace-3D, which leverages EMG and EOG signals captured by
earables to detect the facial muscle activities, track 2D landmarks, and perform continuous 3D
facial reconstruction using a CNN. As another example, Song et al. [239] propose FaceListener,
which uses the commodity headphone to recognize a user’s facial expressions. FaceListener emits
ultrasound signals to detect face movements and uses this information to create a facial landmark
model and recognize facial expressions based on an LSTM model.

User Authentication. Earables have also been utilized to identify unique individual characteristics,
such as a person’s gait for the purpose of user authentication. For gait-based user authentication,
traditional methods often require special equipment, which is cost prohibitive and limited in
range. In contrast, Ferlini et al. [64] propose EarGate, which employs an in-ear microphone to
capture bone-conducted sounds induced by walking to detect the user’s gait for user identification.
Furthermore, they demonstrate that classification performance can be notably improved through
transfer learning. Liu et al. [162] introduce MandiPass, a biometric-based authentication system
that utilizes an intra-corporal biometric called MandiblePrint, derived from the vibrations of
human mandibles. It uses an IMU embedded in an earphone to capture the MandiblePrint when
a user voices some specific sound. This sound generates vibrations in the throat that propagate
through the mandible to the ear, where they are sensed by the IMU. MandiPass validates the
feasibility of MandiblePrint through theoretical modeling and experimental vibration propagation,
demonstrating its potential as a user authentication method.

Sound Localization. Sound localization in earable sensing refers to the ability of ear-worn devices
to determine the direction of incoming sound sources. It is essential for enhancing spatial aware-
ness and improving user experience in hearing aids, AR, and personal assistants. Chatterjee et al.
[31] emphasize the importance of sound localization in enhancing user experience, particularly in
distinguishing between the target speaker and background noise. The authors use binaural wire-
less earbuds and dual-channel neural networks to separate the target voice from the noises. These
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networks consist of a time domain network called CB-Conv-TasNet and a frequency-based network
called CB-UNet to exploit both spatial and acoustic information. As a result, it achieves a better
scale-invariant signal-to-distortion ratio than AirPods Pro, which is based on beamforming. An-
other critical task in sound localization is individualizing the head-related transfer function. This
individualization typically demands extensive and cost-intensive measurements in an anechoic
chamber. To address this issue, Zandi et al. [315] introduce a simplified approach for conducting
these measurements and propose to use a conditional VAE to achieve head-related transfer func-
tion individualization. Last, Yang and Zheng [301] introduce DeepEar to address the issue of sound
localization with two microphones. Unlike traditional methods that rely on extensive microphone
arrays, DeepEar employs binaural microphones, which are more compact and thus more suitable
for integration into devices like hearing aids. DeepEar leverages a multi-sector-based neural
network that divides space into sectors for detecting multiple sound sources simultaneously.

2.7 Generative Al for Sensing

Advancements in Generative Al have provided AloT with opportunities to leverage state-of-the-
art generative models such as large language models (LLMs) to perceive, interpret, and present
IoT sensor data in ways that were not attainable before [263]. Generative Al can correlate sensor
readings with relevant contextual information, such as historical data, environmental conditions,
and operational status, so as to provide deeper insights into the sensor data and make decisions;
it can improve user experiences by allowing non-technical users to interact with sensor systems
and perform data querying using natural language; and it can also help translate raw sensor data
into human-understandable reports and summaries, making it easier for users to understand key
information contained inside sensor data.

Some efforts have been made to leverage such unique capabilities of Generative Al for sensing.
For example, Ouyang and Srivastava [205] propose LLMSense, a prompting framework for LLMs
to make sense of raw sensor data and low-level perception results. This framework can be imple-
mented in an edge-cloud system, with small LLMs running on edge devices to summarize sensor
data and high-level reasoning performed on the cloud to ensure data privacy. Two approaches are
proposed to improve the performance of LLMSense: summarizing sensor data before reasoning and
selectively including historical sensor data. Results show that LLMSense achieves high accuracy in
tasks such as dementia diagnosis using behavior data and occupancy tracking with environmental
sensor data. Xu et al. [287] propose Penetrative Al to explore how LLMs can be extended to interact
with the physical world using IoT sensors and actuators. As a prompting framework, Penetrative
Al shows how carefully constructed prompts can harness LLMs’ embedded world knowledge for
tasks such as user activity sensing and heartbeat detection. Specifically, Penetrative Al operates on
two levels: textualized signal processing, where sensor data are converted into text for LLM anal-
ysis, and digitized signal processing, where LLMs directly interpret sensor data. Using heartbeat
detection as an example, Penetrative Al demonstrates that LLMs can effectively analyze real-world
sensor data with proper guidance, illustrating the potential of integrating LLMs into cyber-physical
systems to enhance their intelligence and functionality. Last, Wan et al. [254] go one step further
beyond prompting and propose a multi-modal LLM named MEIT that translates raw ECG sensor
data into human-understandable reports. For cardiologists, the task of interpreting ECG data and
writing reports can be both intricate and time consuming. MEIT aims to fill this gap by automating
the ECG report generation task. Specifically, MEIT involves instruction tuning a multi-modal LLM
to integrate raw ECG data with corresponding textual instructions, ensuring that the generated
reports are clinically relevant and accurate. Experimental results demonstrate the superior perfor-
mance of MEIT in generating accurate and professional ECG reports, underscoring its potential
for real-world clinical applications.
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Fig. 11. Summary of topics related to computing.

3 Computing
3.1 On-Device Inference

One of the most fundamental and essential compute tasks of AloT is to perform inferences on
the device. On-device inference is particularly critical for latency-sensitive applications or sce-
narios where cloud connectivity is not available. As summarized in Figure 11, existing works on
on-device inference can be grouped into four categories: inference optimization, multi-tenant in-
ference, cross-processor inference, and runtime adaptation.

3.1.1 Inference Optimization. 10T devices are constrained in their onboard computing power,
memory resources, and battery life. The objective of inference optimization is to enhance the com-
putational and energy efficiency as well as to reduce memory demands and efficiently utilize mem-
ory resources during the inference process. For example, Huynh et al. [101] propose DeepMon, an
on-device inference framework that allows large DNNs to run on mobile devices at low latency for
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continuous vision applications. They propose a caching mechanism that exploits the similarities
between consecutive images to cache intermediate processed data within a CNN, which allows
DeepMon to execute very deep models such as VGG-16 in near real time. Ren et al. [219] propose
SC-DCNN, an optimization framework of stochastic computing (SC) for CNNs. They propose to ap-
ply SC to CNNs by designing function blocks and implementing hardware-oriented max-pooling
in the SC domain. In addition, they propose to perform holistic optimizations for feature extrac-
tion blocks and weight storage schemes. By calculating multiplications and additions with AND
gates and multiplexers in SC, SC-DCNN achieves a significant reduction in energy consumption.
Xu et al. [293] propose DeepCache, which adopts proven video compression techniques to sys-
tematically search for neighboring image blocks with similarities rather than restricting matching
solely to blocks in the same positions. They propose dividing video frames into regions, search-
ing for similar regions in cached frames using a specialized matcher, and dynamically merging
adjacent regions to maintain cache effectiveness. Yao et al. [305] propose FastDeeploT, which in-
corporates a profiling module and a compression steering module to optimize execution time and
reduce energy consumption. The profiling module generates diverse training structures and builds
an interpretable model for predicting the execution time, whereas the compression steering mod-
ule enables existing DL compression algorithms to collaboratively minimize both execution time
and energy consumption. In SONIC [74], the authors explore the opportunity of DNN inference
intermittently on energy-harvesting systems. They propose loop continuation that significantly
reduces the cost of ensuring accurate intermittent execution for DNN inference by modifying
loop control variables within a loop nest, as opposed to dividing an extended loop into multiple
tasks. Cao et al. [26] propose DeQA, a set of optimization techniques designed to enable question
answering systems to run on mobile devices. DeQA reduces memory demands by loading par-
tial indexes, dividing data into smaller units, and replacing in-memory lookups with a key-value
database, altogether reducing the memory requirements of question answering systems to just a
few hundred megabytes. Lin et al. [153] propose MCUNetV2, a scheduling technique in a patch-
based manner to minimize memory usage for tiny DL. They propose initially executing the model
on a limited spatial region, followed by the remainder of the network operating with a smaller
peak memory consumption in the usual manner. Additionally, they propose to redistribute the
receptive field to reduce the computation overhead caused by the patch-based initial stage. Jiang
et al. [112] propose Remix, an adaptive image partitioning and selective execution strategy that in-
volves the execution of existing DNNs on non-uniformly partitioned image blocks. They propose
to leverage historical frames to learn the distribution of target objects and achieve higher detec-
tion accuracy with a given latency budget or higher inference speedup without accuracy deduction.
Hou et al. [95] propose a dynamic inference mechanism known as the assemble region-aware con-
volution supernet, which removes redundant operations within CNN models by leveraging spa-
tial redundancy and channel slicing. They propose to split the CNN inference flow into multiple
micro-flows and load them into GPU as single models. In this way, NeuLens outperforms baseline
methods in terms of latency reduction (up to 58%) while achieving accuracy improvement (up to
67.9%) within the same latency and memory constraints. Reggiani et al. [217] propose BiSon-e,
an RISC-V-based architecture that features a binary segmentation to enhance the CPU pipeline.
They propose to perform single instruction, multiple data operations on existing scalar functional
units to increase the performance of narrow integer applications on resource-constrained edge de-
vices. In this way, BiSon-e achieves significant energy efficiency and execution time deduction. To
address the overload caused by the convolution layer, Park et al. [208] propose mGEMM, which
expands the structure of the GEMM and eliminates the problems of memory overhead and low
data reuse rate of the GEMM. They propose a reusable block of highly optimized computation on
the inner computation kernel and partitioned the computation for the loops outside of the inner
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kernel. Yuan et al. [314] propose a learnable input filtering framework named InFi that unifies
both approaches. They propose treating skip as a special case of reuse and designing a filter that
supports both skip and reuse functions, requiring only maintaining an additional key-value table
for reuse in the inference phase. In this way, InFi achieves lower energy consumption and latency.
Kong et al. [124] propose a lossless acceleration method called ConvReLU++, which achieves early
negative result detection by employing reference-based upper-bound calculations. This approach
guarantees that once intermediate results turn negative, the final results will be negative. When
negative results are detected, the remaining computations can be skipped, leading to a significant
latency reduction in ConvReLU++. Yi et al. [311] propose NNV12, an on-device framework that
optimizes cold inference. They propose three optimization techniques encompassing kernel selec-
tion, weight transformation caching, and pipelined inference to effectively reduce the latency of
cold inference. In addition, they propose a heuristic-based kernel scheduling scheme, which fully
harnessed three optimization techniques and led to substantial enhancements in the latency of
cold inference. Last, Liu et al. [163] propose a set of optimization techniques for TREC (transient
redundancy elimination-based convolution), which recognizes and prevents redundant computa-
tions present in the form of identical tiles within input data or activation maps. They propose to
repurpose parts of a matrix used in DNN computations as hashing vectors and embed a two-step
stack for storing clustering IDs in TREC, aided by a reversed index for efficient entry location,
which collaboratively eliminates significant memory overhead.

3.1.2  Multi-Tenant Inference. Multi-tenant inference refers to the simultaneous execution of
multiple distinct AI models, often originating from multiple concurrently running applications.
The key to multi-tenant inference is to efficiently manage and process inference requests from
multiple tenants with limited resources on the device. Han et al. [83] propose MCDNN, a frame-
work for executing DNNs in video stream analytics using an approximation-based approach. They
propose a heuristic scheduling algorithm designed to address approximate model scheduling,
which allocates resources based on their usage frequency and utilizes a catalog to choose the most
accurate model variant. Mathur et al. [188] propose DeepEye, a small wearable camera running
multiple models locally, enabling near-real-time image analysis. They propose an inference
pipeline that increased processor utilization by scheduling the execution of computation-heavy
layers and the loading of memory-heavy layers across multiple models. They also built prototype
hardware powered by a quad-core Qualcomm Snapdragon 410 processor on a custom integrated
carrier board to demonstrate the feasibility of their design. Guo and Hu [78] propose Potluck,
which caches the previously computed results to provide cross-applications approximate dedupli-
cation. They propose a set of algorithms tuning the similarity threshold that regulates the degree to
which various raw inputs are considered to be “the same,” which makes Potluck decreases process-
ing latency for vision workloads. Jiang et al. [109] propose Mainstream, a video processing system
that addresses resource contention by sharing the same portion of DNN when inference is taken,
which avoids redundant work. Additionally, they use an analytical model to estimate the effects
of DNNs for an event and give the optimal model and sample rate option, resulting in significant
overall event F1-score improvement. Fang et al. [58] propose NestDNN, a framework that enables
resource-aware on-device DL in multi-tenant settings. The key idea of NestDNN is to transform a
DNN model into a multi-capacity model, where submodels with smaller capacity are nested inside
submodels with larger capacity through shared parameters. At runtime, NestDNN incorporates a
resource-aware scheduler that selects the optimal submodel for each DNN model and allocates it
the optimal amount of runtime resources so as to jointly maximize the overall performance of all
the concurrently running applications. Lee and Nirjon [136] propose a concept of neural weight
virtualization. Having each block of memory represent a block of weights for one or more DNNs
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makes it possible for multiple DNNs to be put into the main memory which has a smaller capacity
than the total size of the DNNs. In this way, weight virtualization achieves significant improvement
in execution time and energy efficiency. Bateni and Liu [14] propose NeuOS, a latency-predictable
framework for DNN-driven autonomous systems. They introduced the notion of a cohort, which
represents a group of DNN instances capable of communication via a shared channel. They also
propose a technique to predict the best system-level power configuration for each DNN of the
cohort to meet the deadline for processing. Ling et al. [158] propose RT-mDL, a framework that en-
ables heterogeneous DL tasks to execute on edge devices by concurrently optimizing DNN model
scaling and real-time scheduling. They propose a model scaling algorithm constrained by storage
limitations that generates a range of model variants and overall optimizes the DL execution by
identifying the optimal combination of task priorities and scaling levels of DL tasks. Han et al. [82]
explore a block-level scaling of DNNs, which only extracts and retrains descendant blocks from a
complete DNN. Additionally, they employ a runtime scalar to determine the most effective combi-
nation of blocks to maximize accuracy. In this way, LegoDNN offers a wider range of model sizes
without increasing time cost, resulting in significant improvement in accuracy and energy con-
sumption reduction. Kwon et al. [126] propose YONO based on product quantization to compress
heterogeneous models into two codebooks. Additionally, they enable in-memory model execution
and support model switching for dissimilar multi-task learning on microcontrollers, achieving
significant latency and energy consumption reduction. Liu et al. [174] introduce VELTAIR, a sched-
uling approach that adapts its granularity to efficiently minimize scheduling conflicts. Additionally,
they propose an adaptive compilation strategy that enables dynamic selection of programs with
appropriate exclusive and shared resource usage patterns, aimed at mitigating overall performance
degradation caused by interference. In REEF [81], the authors explore preemptive scheduling
support for inference tasks on GPU. They propose a reset-based preemption mechanism that
initiates a real-time kernel on the GPU through proactive termination and subsequent restoration
of best-effort kernels. Zhang et al. [345] propose POS, an operator-level scheduling framework
combined with four operator-scheduling strategies. They propose abstracting the multi-model
inference into a computation graph-based unified intermediate representation and finding optimal
scheduling strategies for operators in the computation graph automatically with a learning-based
operator-scheduling algorithm.

3.1.3  Cross-Processor Inference. Cross-processor inference refers to the ability of a model to
perform inference across different types of processors (i.e., CPUs, GPUs, TPUs) within a device.
Modern IoT devices are often equipped with multiple heterogeneous processors, each of which is
optimized for certain computing tasks. This provides a great opportunity to leverage these hetero-
geneous processing units to collaboratively perform inference in a cross-processor manner. The
realization of cross-processor inference involves a pivotal strategy: model partitioning. This tech-
nique capitalizes on the multiple processors to optimize inference tasks by partitioning the models
and executing individual partitions on different processors. For example, Lane et al. [130] propose
DeepX, a software accelerator for DL execution that allows any developer to use DL methods and
automatically lowers resource usage. They propose a deep architecture decomposition algorithm
that can decompose models into unit blocks for heterogeneous local device processors, maximizing
resource utilization. Kim et al. [122] propose pLayer, a low-latency on-device inference runtime
that accelerates each layer by utilizing the onboard CPU and GPU simultaneously. They propose
channel-wise workload distribution to distribute the output channels of a neural network layer
to both the CPU and GPU to fully utilize the resources, achieving a significant reduction in la-
tency. Tan and Cao [246] explore model partitioning between the CPU and neural processing
units (NPUs). NPUs run DNN models faster but with less accuracy. Consequently, they propose

ACM Trans. Sensor Netw., Vol. 21, No. 1, Article 9. Publication date: January 2025.



9:28 S. Iman Siam et al.

heuristic-based algorithms and ML-based model partition, which can explore a range of layer com-
binations to determine the part for the CPU and NPU separately with an optimal time-accuracy
tradeoff. Wang et al. [259] propose AsyMo, which focuses on partitioning the matrix multiplica-
tion blocks of DL models on asymmetric multi-processors. They propose cost model directed block
partitioning and asymmetry-aware scheduling to balance the tasks. Additionally, they propose to
set the frequency by offline profiling energy curves, which achieve more energy efficiency than
baselines. Jia et al. [108] propose CoDL, a concurrent DL inference framework that makes opti-
mal use of diverse processors to expedite the execution at the operator level. They propose to use
hybrid-dimensional partitioning and operator chaining to reduce sharing-related overhead, and
an accurate, lightweight method to predict latency by considering non-linearity and concurrency.
In this way, CoDL achieves higher speedup and more energy savings compared with other meth-
ods. Ling et al. [157] propose a model inference abstraction duo-block consisting of a CPU block
and a GPU block. Such a duo-block is generated based on NAS techniques. They also propose a
dynamic cross-processor scheduler that enhances the concurrent real-time DNN inference by op-
timizing CPU/GPU utilization. Current mobile inference frameworks struggle to efficiently utilize
diverse processors for multi-DNN workloads in applications due to a focus on a single DNN per
processor, hampering performance and posing a challenge to serving multi-DNN tasks. To address
this issue, Jeong et al. [104] propose Band, a mobile DNN runtime for scheduling multi-DNN re-
quests based on a central component. They propose using a model analyzer for model partitioning
into subgraphs. A scheduler assigns subgraph-worker pairs, followed by execution of subgraphs
on relevant processors by workers. In this way, Band outperforms TensorFlow Lite in terms of
end-to-end performance. Xu et al. [285] propose Mandheling, a system that leverages the benefits
of DSPs in integer-based numerical computations during mixed precision training. They propose
a co-scheduling technique between the CPU and DSP to mitigate the overhead caused by DSP-
unfriendly operators, which achieves latency improvement. In addition, they propose incorporat-
ing DSP compute subgraph reuse, self-adaptive rescaling, and batch splitting to collaboratively
eliminate the preparation overhead on DSPs. Wei et al. [267] propose NN-Stretch, an automated
model adaptation strategy that splits the DL model based on processor architecture traits. They
propose structure-preserved meeting point identification and capacity-guaranteed depth-width
scaling. They also propose a subgraph-based spatial scheduler for parallel inference across hetero-
geneous processors. Another crucial component of cross-processor inference is distributing the
workload across various processing units to minimize idle time. Park et al. [210] propose PointSplit,
a 3D object detection framework for multi-accelerator edge devices. They propose a 2D semantics-
aware biased sampling method to sample two complementary point sets and schedule them to be
processed on the GPU and NPU separately.

3.1.4  Runtime Adaptation. Runtime adaptation in on-device inference refers to the ability of Al
models to adjust and tailor their runtime behaviors in response to the changing available resources
of the devices and evolving data inputs over time to deliver optimized system performance. For
example, input images with contents that are easy to recognize do not need a large DNN model to
process. Given that, Fang et al. [57] propose FlexDNN, an input-adaptive framework that leverages
the early exit mechanism to construct a single DNN model but dynamically adapts its model ca-
pacity to matching the difficulty levels of the input images at runtime. In this way, FlexDNN is able
to achieve a significant reduction in frame drop rate and energy consumption while maintaining
accuracy. Xu et al. [295] propose ApproxDet, a multi-branch framework employed to identify the
optimal configuration branch for adaptive video object detection based on the characteristics of
video content and available resources at runtime. They propose an accuracy and latency-driven
scheduler to select the optimal execution branch for the specific user requirement, which achieves
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Fig. 12. lllustration of a runtime adaptation pipeline.

52.9% latency reduction with higher accuracy over YOLOv3 and lower switching overhead com-
pared to other baselines. Feng et al. [60] propose Palleon, which dynamically selects an optimal
DNN model by automatically detecting class skews. They propose a class-skew detector to gener-
ate precise class-skew profiles and catch class-skew switches. In addition, they propose Bayesian
filter and separability-aware model selection techniques to improve accuracy and overall energy
consumption. Guo et al. [77] propose Mistify, an intermediate layer that automates the process
of porting a cloud-based model to a range of models optimized for edge devices across different
points in the design space. They propose an architecture adaptor and a parameter-tuning coor-
dinator, which collaboratively selects the optimal model that adapts to users’ hardware profiles
and performance targets. Last, LiteReconfig proposed in the work of Xu et al. [294] consists of
two components that collaborate as a scheduler to determine the execution branch to activate at
runtime. The first component analyzes the cost and benefits associated with all potential features,
and the scheduler selects which features to utilize for selecting the execution branch. The second
component chooses the optimal execution branch within the execution kernel to adapt to different
video contents and available resources.
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grouped into four categories: model partitioning, workload par- | D

titioning, communication optimization, and privacy-preserving
offloading.

Model Partitioning. Model partitioning refers to the task of par-
titioning the Al model between the IoT devices and the nearby
resourceful edge or cloud server such that different parts of the
Al model are executed in a distributed manner. For example, Kang et al. [118] propose Neurosur-
geon, a framework that automatically partitions the DNN computation at the layer level. Neurosur-
geon partitions the DNN into two parts for computation on mobile devices and the cloud, respec-
tively, and trains a predictive model during the deployment phase to identify the optimal partition

Fig. 13. lllustration of model
partitioning,.
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point of the model. In this way, Neurosurgeon achieves significant end-to-end inference latency
and energy consumption reduction over cloud-only methods. Huang et al. [98] propose CLIO, a
framework enabling model compilation for extremely resource-constrained devices. They propose
a novel technique for progressively partitioning models between the cloud and an end device, of-
fering a variety of accuracy-bandwidth tradeoffs. This technique can be integrated with existing
model compression and adaptive model partitioning techniques to achieve enhanced performance.
Huang and Gao [99] propose AgileNN, an offloading technique that minimizes online computation
and communication costs by putting a few valuable features computed locally and thus reducing
the size of the local model. They propose using eXplainable Al to estimate the most important
features in the top k and retained by the local network to make a part prediction combined with
the prediction by the remote network from other less important features for the final result.

Workload Partitioning. Workload partitioning refers to the distribution of workloads such as in-
put data (e.g., images, SLAM map) and different DL models within the same processing pipeline
across various edge devices and cloud servers to optimize performance, reduce latency, and im-
prove resource utilization. Georgiev et al. [70] propose a sensing algorithm scheduler LEO that
specializes in offloading workloads generated by sensor applications to heterogeneous processors.
They propose to bring together critical ideas scattered in existing offloading solutions to maximize
the performance without changing accuracy, and LEO runs as a service on the LPU to perform
both frequent and joint schedule optimization for concurrent pipelines, which also makes LEO
more energy efficient compared with other baseline methods. Current offloading solutions always
assume the presence of a dedicated and robust server to which all inferences can be offloaded.
However, it is possible not to be able to find such a server in reality. To address this issue, Zhang
et al. [336] propose Elf, a framework that accelerates mobile deep vision applications through
parallel offloading, without being restricted to specific server provisioning. They propose a recur-
rent region proposal algorithm by predicting a new video frame’s region proposals based on the
ones detected in previous frames, which achieve less latency compared with other baseline meth-
ods. Then, these predicted RPs are partitioned into “RP boxes” and offloaded to multiple servers,
and both partitioning and parallel processing make Elf achieve less resource demands. Ben et al.
[15] propose Edge-SLAM, a system that leverages edge computational resources to offload parts
of Visual-SLAM. They propose to run the tracking module of Visual-SLAM on mobile devices
and move the left to nearby edge devices, which makes Edge-SLAM achieve significantly reduced
latency. Additionally, they propose adding a partial global map as a fixed-size local map on the
mobile device to achieve constant memory usage with minimal loss of accuracy in the final map.
Another line of research in workload partitioning involves dividing different DL models within
the same processing pipeline across edge devices and the cloud server. Jiang et al. [115] propose
CoEdge, a cooperative edge system for distributed real-time DL tasks. They propose a hierarchical
DL task scheduling framework integrated with global task dispatching and local batched real-time
DL execution to maximize the utilization of edge resources. Additionally, a GPU-aware concurrent
DL containerization method is proposed to furnish an isolated execution environment for every
task. These techniques make CoEdge achieve a lesser deadline missing rate and less end-to-end
latency compared with other baseline methods.

Communication Optimization. Communication between IoT devices and the cloud is often con-
ducted through wireless channels in which the bandwidth can be quite limited. To ensure a timely
exchange of migrated workloads between IoT devices and the cloud while minimizing bandwidth
usage and power consumption, efficient communication is crucial. Xie and Kim [279] explore a
DNN-aware compression algorithm measuring the perception model of a DNN to compress the in-
put while maintaining inference accuracy. They propose to use the gradient concerning the input
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to characterize the DNN’s perception. Using this estimated perceptual model, GRACE addresses
a series of optimization challenges to ascertain the optimal codec parameters within the existing
codec framework. In this way, GRACE achieves considerable compression ratio gains with little
loss of accuracy. Laskaridis et al. [132] propose SPINN, a synergistic progressive inference system
that simultaneously employs an early-exit policy both in the cloud and locally. They propose an
early-exit-aware cancellation mechanism that allows the interruption of the inference when hav-
ing a confident early prediction evaluated by the wrapper of an intermediate classifier to provide
robust operation under uncertain connectivity. Additionally, they propose a CNN-specific packing
mechanism and an SLA- and condition-aware scheduler that make SPINN achieve higher through-
put, higher accuracy, and less energy cost compared with other baseline methods. Yao et al. [304]
propose deep compressive offloading, an asymmetric encoder/decoder framework that uses an ef-
ficient encoder on a local device while utilizing a relatively complex decoder on a server. In this
way, most of the processing burden can be put on the server side and achieve a significant la-
tency improvement. Additionally, they propose DeepCOD, an effective system that incorporates
a performance predictor and a runtime partition decision maker, which achieves higher speedup
for inference. Yao et al. [303] explored an edge-cloud training pipeline by harnessing parallel pro-
cessing capabilities spanning both edge and cloud environments. They proposed to apply sched-
uled feature replay and error-feedback compression, which fully utilize the computing capabilities
available at the edge. Additionally, they offered a context-aware decision engine to adaptively
organize parallel execution and compression, which keeps the overall latency low. Fu et al. [66]
propose Hyperion, a distributed mobile offloading framework that supports various applications
and heterogeneous hardware. They propose a regularity-aware kernel analyzer to break down the
tasks into smaller parts while ensuring that only the necessary data is transmitted, which makes
Hyperion more efficient. Before scheduling, they propose a context-aware computing time predic-
tor to predict the runtime duration of a given slice and a pipeline-enabled and network-adaptive
scheduler to determine the optimal number of slices to be offloaded for each computational unit;
both achieve superior speedup compared with the baseline. However, as the number of agents in-
creases, the operational overhead, which relies on a central node, also increases. To address this
issue, Xu et al. [290] propose SwarmMap, a framework that scales up collaborative edge-based
Visual-SLAM service. They propose a change log based map information tracker to achieve the
minimum bandwidth consumption for map synchronization. Additionally, they propose a SLAM-
specific task-aware scheduler that makes decisions based on the status of agents to minimize the
procession time. Further, they propose a map backbone profiling technique to mitigate storage
overhead without reducing accuracy.

Privacy-Preserving Offloading. 10T devices often collect personal data that may contain privacy-
sensitive information. In scenarios where data are also needed to offload along with the workloads
to edge or cloud servers, it is imperative to ensure that this data is handled in a way that preserves
the privacy of users. PriMask [111] introduces a small-scale neural network named MaskNet to
mask the data before its transmission to the cloud. The data masked by MaskNet cannot be recov-
ered by the cloud, thus preserving the privacy after offloading. Moreover, each mobile device has
its own unique MaskNet, which ensures that a privacy breach affecting the MaskNet of one device
does not compromise the privacy of data on other devices.

3.3 On-Device Training

Besides on-device inference, another fundamental and essential compute task of AloT is on-device
training. As summarized in Figure 11, existing works on on-device training can be grouped into
two categories: training on a single device and training across distributed devices.
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Training on a Single Device. In the case of single-device training, the entire training process takes
place on a single device. To achieve effective training on a single device, existing efforts have
mainly focused on the exploration of memory optimization. For example, Lis et al. [159] propose
DropBack, which only trains a fraction of the weights who have the highest accumulated gradients
while keeping the remaining weights not stored in memory, which significantly reduces the mem-
ory access cost. Zhang et al. [342] propose MDLdroidLite, a learning framework that transforms
regular DNNs into resource-efficient models for on-device learning. They propose a release-and-
inhibit control technique to wisely grow each layer independently from tiny to backbone, which
avoids redundant resource overhead. In addition, they propose a release-and-inhibit control adap-
tion pipeline that transfers existing parameters to new-born parameters during growth. In this
way, MDLdroidLite achieves 28X to 50x fewer model parameters compared with other baselines.
Zhou et al. [352] propose Octo, a cross-platform system designed for lightweight on-device learn-
ing that leverages the fixed-point computational capabilities of embedded processors. They pro-
pose an INT8 training technique with loss-aware compensation and parameterized range clipping
methods to efficiently apply quantization in forward pass and backward pass, respectively. In this
way, Octo achieves higher training efficiency compared with other baselines. Wang et al. [260]
propose Melon, a memory-optimized on-device training framework that retrofits established re-
computation and micro-batch techniques to fit into resource-constrained devices. They further
propose a lifetime-aware memory pool to optimize memory utilization based on the character-
istics of DNN training. In addition, they propose an on-the-fly memory adapting technique to
quickly adjust to changes in the memory budget and resume execution using the partial results. In
this way, Melon achieves higher training throughput with the same batch size. Gim and Ko [73]
propose Sage, an on-device training framework that incorporates memory-optimized techniques.
They propose to separate differentiable operations from computable operations by employing a
two-layer abstraction to represent a node in the computational graph, then Sage applies operator
fusion and subgraph reduction to minimize the graph size. Additionally, they propose to dynam-
ically adapt to the memory budgets by using gradient accumulation and checkpointing. Lin et al.
[154] propose an on-device training framework with algorithm-system co-design. They propose a
quantization-aware scaling technique to align the accuracy with the floating-point counterpart by
automatically scaling the gradient with varying bit precision. To save memory during backward
computation, they propose a sparse update technique to skip the computation of less important
layers and sub-tensors. Huang et al. [100] propose ElasticTrainer, a technique that can dynamically
select the optimal trainable network portion at training time. They propose a tensor importance
evaluator by leveraging the XAl technique to define the importance of a tensor in a specific epoch.
Additionally, they propose a tensor timing profiler to compute the backward pass timing of each
tensor. Based on importance and time, they propose a tensor selector to select the optimal trainable
network portion, which makes ElasticTrainer achieve higher training speedup with less energy
consumption compared with baselines.

Training across Distributed Devices. In the case of training across distributed devices, DL models
are trained collaboratively across a network of IoT devices where data on each device can be ex-
changed with other devices. In doing so, the collective computational power and data across the
multiple devices can be leveraged to jointly train and update the DL models. For example, Zhang
et al. [343] propose MDLdroid, a decentralized mobile DL training framework for mobile sensing
applications. They propose a chain-directed synchronous stochastic gradient descent algorithm
that dynamically aggregates and manages the model with one of the neighbors based on run-
time resource status. Additionally, they propose a chain-scheduler, an agent-based multi-goal RL
technique, incorporating an accelerated reward function to effectively and equitably manage and
allocate resources. In this way, MDLdroid achieves high training accuracy with low overhead. As
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another example, Zeng et al. [318] propose Mercury, an importance sampling based on-device dis-
tributed training framework. The key principle behind the design of Mercury is that not all data
samples contribute equally to model training. Given that, in each training iteration, Mercury identi-
fies and selects data samples that provide more important information. By focusing on those more
important data samples, Mercury considerably enhances the training efficiency of each iteration.
As a result, the total number of iterations and total training time is reduced.

3.4 Federated Learning

As data collected by IoT devices often contain privacy-sensitive information, FL. emerges as a
privacy-preserving approach that can train models across decentralized devices while keeping
data on each device to preserve data privacy [117, 256, 333]. Unlike fully on-device training, FL
has the advantage of allowing information to be shared among devices, making it suitable for more
complex applications that require more data volume. Instead of gathering data from different de-
vices into a central server for training, the model is disseminated to the participating devices in
FL. These devices then conduct local training for a number of rounds and communicate only their
model updates or gradients back to the central server for aggregation. The updated global model
is subsequently broadcasted to the next set of participating devices for further training rounds
[189]. As summarized in Figure 11, existing works on FL for IoT can be grouped into seven cat-
egories: data heterogeneity, communication optimization, system heterogeneity, personalization,
client selection, model heterogeneity, and frameworks and benchmarks.

Data Heterogeneity. Unlike centralized training, data distributed across the devices participating
in the FL process is generally non-IID (non-independent and identically distributed). Such data
heterogeneity could make the local models overfit to local data, and aggregating these models could
lead to convergence issues. Shuai et al. [236] propose BalanceFL, which scales the model weights,
making it behave as if it were trained on uniform distributed data. As such, it allows the global
model to effectively learn both common and rare classes from a long-tailed real-world dataset and
thus mitigates the bias caused by data heterogeneity. Shin et al. [235] propose FedBalancer, which
uses a data selection strategy to select informative samples with adaptive deadline control. In doing
so, the global model avoids overfitting caused due to data heterogeneity and makes convergence
more stable. Last, Zhang et al. [331] propose GPT-FL, which pre-trains the global model using
synthetic data generated by generative models before fine-tuning with federated training. This
makes the global model start from a more stable point instead of starting from scratch such that
data heterogeneity does not strongly affect convergence.

Communication Optimization. Communication between client devices and the central server in FL
is often conducted through bandwidth-limited wireless networks. Therefore, reducing bandwidth
usage between client devices and the central server can significantly enhance FL efficiency. Shi
et al. [232] introduce gTop-k. Instead of accumulating the local top-k gradients from all clients
to update the model in each iteration, gTop-k chooses the global top-k gradients from a subset
of clients, which considerably reduces the amount of gradients to communicate. Reisizadeh et al.
[218] propose FedPAQ, which quantizes model updates to reduce their sizes before uploading to
the server while the server only periodically averages the updates. The quantized updates and the
periodic averaging on the server lead to lower communication costs. Similarly, Jaunjhunwala et al.
[106] propose an adaptive quantization scheme called AdaQuantFL, which achieves communica-
tion efficiency through quantization while maintaining a low error floor by changing the number
of quantization levels during training. Last, Das et al. [45] propose FedGLOMO to reduce the vari-
ance of local updates by global aggregation with momentum. This results in faster convergence
and an overall lower number of communication rounds.
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System Heterogeneity. The participating devices in FL can be heterogeneous in their available
on-device computing resources and network bandwidths. Such system heterogeneity would in-
evitably cause different participating devices to complete their local training at different times.
Consequently, the slowest clients become the bottlenecks in the FL process. One key technique
to address system heterogeneity is the design of semi-asynchronous or asynchronous communi-
cation protocols. For example, Wu et al. [270] introduce SAFA, which uses a lag-tolerant model
distribution algorithm and version-aware aggregation method based on a cache system. This de-
couples the global model broadcast and gradient upload process, making the system more toler-
ant of lagging clients. Ma et al. [182] propose FedSA, which is a semi-asynchronous mechanism
where the server aggregates a subset of local models by their arrival order in each round. The
authors show that this approach improves convergence both theoretically and experimentally. Xie
et al. [277] propose FedAsync, where the updates to the server and the broadcast to the clients
are done asynchronously with a buffer. The updates from clients that are far behind the server
schedule are deprioritized or excluded entirely. This avoids the destabilizing effects of stragglers
and increases the number of communication rounds the system can complete within a time frame.
Nguyen et al. [200] propose FedBuff, which also uses a buffered asynchronous aggregation scheme
sending updates asynchronously but aggregating and broadcasting updates synchronously. This
not only makes the system lag tolerant but also compatible with secure aggregation and differen-
tial privacy (DP). Sun et al. [242] introduce FedSEA, in which the authors design a scheduler that
can efficiently predict the arriving time of local updates from devices and adjust the synchroniza-
tion time point according to the devices’ predicted arriving time. In doing so, it reduces the total
number of straggling clients. Zhang et al. [334] propose an asynchronous FL framework named
TimelyFL. The key idea of TimelyFL is adaptive partial training, which allows each client to train
part of the model based on the available resources of each client at runtime. In doing so, more
clients are able to join in the global update without staleness.

Personalization. Besides training a global model, another use case of FL is to personalize the global
model for participating clients such that the personalized model can better fit the needs of the end
user. For example, Sub-FedAvg [253] creates a personalized subnetwork for each client from the
global model by applying structured pruning on convolutional filters and unstructured pruning
on FC layers. Li et al. [138] propose FedMask, where each device learns a sparse binary mask and
applies the learned sparse binary mask to local models to create personalized and sparse local mod-
els for each client. Instead of creating a personalized model for each user, Tu et al. [252] propose
FedDL, a clustering approach in which the client pool is grouped into several clusters, and one per-
sonalized model is assigned to each cluster. Similarly, AttFL [209], designed for time-series mobile
and embedded sensor data, groups clients with similar contextual goals using cosine similarity,
and redistributes updated personalized model parameters for improved inference performance at
each local device. Deng et al. [47] propose TailorFL, a resource-aware and data-directed pruning
strategy that makes each device’s submodel structure match its available resource and correlate
with its local data distribution. Last, FedSelect [245] incrementally expands subnetworks to person-
alize client parameters, concurrently conducting global aggregations on the remaining parameters.
This enables the personalization of both client parameters and subnetwork structure during the
training process.

Client Selection. In each round of FL, the central server selects a subset of clients to participate in
the federated training process. The client selection strategy to determine which subset of clients to
be included in each round plays a significant role in FL. For example, Lai et al. [128] introduce Oort,
a utility-based client selection scheme that takes both data and system utilities into account, where
data utility is measured by the importance of model update and system utility is measured by the
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local training speed and the available network bandwidth for communication. By selecting clients
with the highest utilities, Oort enhances both data and system efficiency and outperforms random
client selection in terms of time-to-accuracy performance. PyramidFL [143] moves one step further
and proposes to exploit data and system utilities within the selected clients to further enhance the
time-to-accuracy performance of federated training. Last, Ouyang et al. [206] introduce ClusterFL,
which minimizes the empirical training loss of multiple learned models while automatically cap-
turing the intrinsic clustering relationship among the clients. This helps select and drop the clients
with little correlation with others in each cluster, which speeds up the federated training process.

Model Heterogeneity. In standard FL, the participating clients and the central server collaboratively
train the same model. However, imposing the same model on all devices would exclude low-end
devices that do not have the enough memory. Moreover, state-of-the-art Al is increasingly reliant
on large models, such as LLMs. Requiring the server and client models to be identical makes it
impossible for standard FL to train such large models due to the resource limitations of client
devices. Given that, model-heterogeneous FL was introduced to address this issue, allowing for the
training of models with varying capacities across the server and clients. One primary approach
for model-heterogeneous FL is based on knowledge distillation. For example, Li and Wang [146]
propose FedMD, where clients train their own local models on a public dataset and upload their
logit vectors to the server for knowledge distillation. Since only logits are sent, clients’ local models
can have different architecture and sizes. Lin et al. [156] propose FedDF to train the global model
through ensemble distillation in which client models with different sizes and architectures are
used as teachers. An unlabeled dataset is used and the predictions of the teacher models on that
dataset are used to distill the global model. Similarly, Cho et al. [40] propose Fed-ET, in which
models of different architectures and sizes are trained on clients’ private data and then used to
train a larger model at the server. However, Fed-ET uses weighted consensus distillation, where
the client updates are weighed based on a consensus function. This deprioritizes underperforming
clients, resulting in higher accuracy. The other primary approach for model-heterogeneous FL is
based on partial training where different parts of the global model are extracted and disseminated
to different clients for local training. For instance, Federated Dropout [22] proposes to randomly
extract submodels of different sizes from the global model. Given the random nature, the submodels
extracted from the global model in each round can be different. During the update step, the server
aggregates the sampled client updates with weighted averaging based on how many updates each
part of the global model receives. Different from Federated Dropout [22], HeteroFL [48] and FjORD
[92] propose static submodel extraction schemes where the submodels extracted from the global
model in each round are always the same. However, the key issue of static submodel extraction
schemes is that part of the global model cannot be trained on data across all the clients. This
inevitably biases the global model training, and especially data heterogeneity across the clients
is high. To address this key issue, Alam et al. [6] propose FedRolex, which is a rolling submodel
extraction scheme that allocates submodels of different sizes to clients and progressively rolls the
submodel extraction window across the entire global model. In doing so, all parts of the global
model are evenly trained on the entire client data.

Frameworks and Benchmarks. Frameworks and benchmarks play important roles in enabling FL
on IoT devices. Popular FL frameworks include FedML [85], which implements a wide range
of FL algorithms and datasets to facilitate developing and evaluating FL algorithms for a wide
range of applications. Flower [16] is another FL framework that is built on top of Ray [199] and
is heavily customizable to different FL algorithms. FedScale [127] provides high-level APIs to
implement, deploy, and evaluate FL algorithms at scale across different hardware and software
backends. These frameworks are, however, not specifically geared toward IoT devices. In terms
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of benchmarks, existing FL benchmarks are predominantly conducted on datasets in domains
of computer vision (FedCV [86]), natural language processing (FedNLP [152]), medical imaging
(FLamby [248]), speech and audio (FedAudio [332]), multimedia (FedMultimodal [61], FLUTE [49]),
and graph neural networks (GNNs) (FedGraphNN [84]). These datasets, however, do not come
from genuine IoT devices and therefore do not accurately reflect the distinctive characteristics of
IoT data. In contrast, Alam et al. [7] propose FedAIoT, an FL benchmark designed for IoT devices.
FedAlIoT includes eight datasets collected from IoT devices such as smartphones, smartwatches,
Wi-Fi routers, drones, and smart home sensors. It also includes an FL framework customized for
IoT, which supports IoT-friendly models and facilitates non-IID data partitioning, IoT-specific
data preprocessing, quantized training, and noisy label emulation.

3.5 Al Agents for AloT

Traditional ML approaches focus on low-level basic recognition tasks. However, real-world ap-
plications can be complicated and require not only basic perception but also performing more
complicated tasks such as making higher-level plans and decisions based on reasoning. Al agents,
powered by advanced generative Al models such as LLMs, can autonomously perform such compli-
cated tasks, thereby significantly enhancing the capabilities of AIoT. Some efforts have been made
to build AI agents for AloT. For example, multi-modal input is crucial for developing Al agents
for AIoT, as IoT devices in general collect data from multiple sensing modalities such as language,
vision, and audio. Chen and Li [36] introduce Octopus v3, a multi-modal model with functional
tokens tailored for Al agents, which supports both English and Chinese and operates efficiently on
various edge devices such as Raspberry Pi. Wang et al. [257] introduce Mobile-Agent, an Al agent
designed for mobile devices. Mobile-Agent can interpret user instructions to identify and locate
elements on the mobile app’s interface. It then autonomously plans and executes tasks, navigating
apps step by step without requiring system-specific customization. Wen et al. [268] introduce Au-
toDroid, a mobile task automation framework designed to handle arbitrary tasks on an Android
application without manual intervention. AutoDroid combines the capabilities of LLMs with dy-
namic app analysis to manage unseen tasks. During the offline stage, it gathers app-specific knowl-
edge by exploring user interface relationships and creating simulated tasks. In the online stage,
AutoDroid uses memory-augmented LLMs to guide the next actions and complete tasks based on
these suggestions. Experimental results demonstrate that AutoDroid effectively automates tasks
and outperforms existing training-based and LLM-based methods. Last, as another line of research,
text rewriting is a crucial feature of Al agents, as it can enhance communication by transforming
informal or incorrect text into well-structured content. Despite advancements in LLMs for text
summarization and rewriting, their large size and computation time make them challenging to
use on mobile devices. Developing a smaller model with similar capabilities is also challenging
due to the need to balance size and performance and the requirement for expensive data label-
ing. Zhu et al. [353] present MessageRewriteEval, a compact yet powerful language model for text
rewriting tasks that operate efficiently on mobile devices. They present an innovative method for
fine-tuning instructions for a mobile-centric text rewriting model, enabling high-quality training
data generation without human labeling.

4 Networking & Communication

4.1 Cellular/Mobile Networks

As cellular networks evolve over many generations, they play an increasingly important role in
providing mobile, reliable, and evolving communication. As summarized in Figure 14, existing
works on Al-empowered cellular/mobile networks can be grouped into four categories: network
configuration, resource allocation, traffic analysis, and signal generation.
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Fig. 14. Summary of topics related to networking & communication.

Network Configuration. Cellular/mobile network parameters are typically manually configured
based on rulebooks. Unfortunately, this process is time consuming, error prone, and difficult to
maintain. Al-guided network configuration has been explored to provide a data-driven approach
to improve network performance and service robustness. For example, adding new carriers to ac-
commodate increasing voice and data traffic can make cellular network configuration tasks quite
challenging. To address this issue, Mahimkar et al. [183] propose Auric, which uses a series of
carrier attributes as inputs to train a DL model and outputs network configuration based on ge-
ographical proximity. Experimental results show that Auric leads to 96% accuracy across a large
number of carriers and configuration parameters when evaluated on real-world LTE network data.
As another line of research, Liu et al. [175] introduce FIRE, a system that employs a variant of
VAE for downlink channel estimation. In doing so, it eliminates the overhead of requesting feed-
back from client devices and improves the quality of frequency domain duplexing MIMO systems.
Moreover, FIRE effectively supports MIMO transmissions in real-world settings, achieving an SNR
enhancement of more than 10 dB compared to the state of the arts.

Resource Allocation. Al techniques can also enhance the performance of cellular/mobile networks
by managing and distributing critical network resources based on various factors such as demand,
network conditions, and service requirements in a data-driven manner. For example, Xiao et al.
[272] conduct an extensive measurement study on the ecosystem of mobile virtual network op-
erators. Based on the findings, the authors propose to leverage big data analytics and ML-based
techniques to optimize a mobile virtual network operator’s service, such as predicting monthly
data usage to optimize data plan reselling, customer churn profiling, and mitigation. As another
example, Zhang et al. [323] propose Microscope, a DL-based framework that decomposes per-
service level resource demand based on spatial-temporal features hidden in traffic aggregates. In
doing so, Microscope reduces relative demand estimation error to below 1.2%, allowing cellular
operators to allocate network resources more accurately.

Traffic Analysis. Traffic analysis refers to the techniques to monitor, analyze, and optimize the
flow of data across the network. Al-based traffic analysis can help in forecasting future traffic
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demands and making adjustments to enhance the overall network efficiency. Shen et al. [229]
propose a fast map-matching system named DMM for cellular data. DMM utilizes an RNN to
determine the most probable road trajectory given a series of cell tower locations. To make DMM
practically useful in real-world scenarios, DMM also incorporates a number of techniques such as
spatial-aware representation of cell tower sequences, an encoder-decoder structure for variable
input and output lengths, and a RL-based model to optimize the matched results.

Signal Generation. Last, the success of Generative Al in natural language processing and computer
vision has sparked interests in using Generative Al in the domain of cellular/mobile networks. For
example, NeRF? [346] introduces an RF radiance field that uses a neural radiance network to model
a continuous volumetric scene function, which captures the propagation of RF signals in complex
environments. The model trained with signal measurements and a physical model of ray tracing
can generate synthetic RF datasets that can be adopted to boost the training of application-layer ar-
tificial neural networks. Experimental results demonstrate the effectiveness of NeRF? in the fields
of indoor localization and 5G MIMO. As another example, Chi et al. [38] present RF-Diffusion, a
novel approach for generating high-quality time-series RF signals using a generative model. The
method involves using time-frequency diffusion theory and a hierarchical diffusion transformer to
generate high-quality synthetic RF signals by leveraging the unique characteristics of RF signals
in both time and frequency domains. RF-Diffusion demonstrates superior performance compared
to other generative models including DDPM, DCGAN, and CVAE, achieving higher structural sim-
ilarity and better SNRs.

4.2 Wi-Fi Networks

As summarized in Figure 14, existing works on Al-empowered Wi-Fi networks can be grouped
into two categories: coverage estimation and interference cancellation.

Coverage Estimation. Al-empowered Wi-Fi coverage estimation aims to leverage Al algorithms to
obtain the distribution and strength of Wi-Fi signals in a specific area with higher resolution. For
example, inspired by advancements in image super-resolution, Li et al. [148] propose Supreme,
which constructs fine-grained radio maps based on coarse-grained radio maps crowd-sourced
across sites with a deep spatial-temporal reconstruction network consisting of 3D convolutions,
spatial-temporal residual blocks, and reconstruction subnets. The authors have conducted
experiments on a dataset consisting of 6 months of data collected from two university campuses.
Experimental results show that Supreme outperforms state-of-the-art baselines based on coarse-
grained radio maps and achieves lower localization error in a Wi-Fi fingerprint-based localization
case study.

Interference Cancellation. As the number of wireless devices increases, multiple devices may
simultaneously transmit data within the same unlicensed Wi-Fi band. This can cause severe
performance degradation. To ensure reliable communication, advanced interference cancellation
techniques are needed. Chen et al. [35] introduce AiFi, an Al-empowered interference cancellation
method for commodity Wi-Fi devices to estimate interference using knowledge gathered from
the Wi-Fi receiver’s physical layer without extra RF hardware. AiFi leverages the domain knowl-
edge of Wi-Fi physical layer information including pilot information and CSI to guide the DL
model design. Specifically, AiFi first extracts the interference features from Wi-Fi physical layer,
estimates interference via an attention network using these features, and finally removes those
interference from the received signal using an FC network and an LSTM. Experiments show that
AiFi effectively boosts the MAC frame reception rate by 18X with a cancellation delay under 1 ms
per frame.
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4.3 Visible Light Communication

VLC uses visible light as a data transmission medium to connect devices and communicate. VLC
requires bit encoding using visible light sources, and light-sensitive sensors as receivers. As sum-
marized in Figure 14, in VLC, Al has been used to improve the performance of optical camera
communication (OCC), screen-camera communication (SCC), and passive-VLC.

Optical Camera Communication. OCC relies on LED lighting infrastructures as transmitters and
cameras as receivers. The coded information is either transmitted directly from LED lights or
reflected from the illuminated objects and is received by the camera. Liu et al. [176] introduce
CORE-Lens, which addresses the challenges posed by the mutual interference between OCC and
object recognition in indoor environments. Traditional OCC systems often suffer from the entan-
glement of light patterns used for communication with the background, which degrades both OR
accuracy and OCC decoding performance. CORE-Lens addresses these challenges by employing a
disentangled representation learning approach combined with GAN-based image reconstruction.
Experimental results show that CORE-Lens achieves superiority in both visible light sensing and
communications compared to conventional approaches. Xiao et al. [274] propose WinkLink, an
OCC system that enables robust transmission behind complex backgrounds even under low SNR
conditions. They design a two-stage DNN and a context-aware demodulation protocol to extract
subtle signals in the lossy OCC channel. WinkLink is trained solely on a synthesized dataset yet
generalizes well to unseen real-world backgrounds.

Screen-Camera Communication. SCC encodes video content in a human-imperceptible manner on
a screen as the light source and uses cameras capturing images of such screen content work as
receivers. Existing techniques on SCC often suffer from high decoding errors due to screen extrac-
tion inaccuracies and perceptible flickers on common refresh rate screens. To address this issue,
Tran et al. [250] present DeepLight, an innovative approach for SCC that addresses the challenges
of decoding inaccuracies and perceptible screen flickers. For the bit encoder, DeepLight applies a
Manchester coding strategy. For the decoder, DeepLight adopts the state-of-the-art deep object de-
tection pipeline to extract the screen from a camera frame and then adopts a DNN-based model to
decode spatially encoded bits in the frame simultaneously. Experimental results show that Deep-
Light is able to achieve high decoding accuracy (frame error rate < 0.2) and moderately high data
throughput (> 0.95Kbps) at extended distances.

Passive-VLC. Instead of relying on active light sources for data transmission, passive-VLC uses
ambient light that can be modulated and then detected by a receiver to decode the transmitted in-
formation. Essentially, passive-VLC systems leverage changes in light intensity or other properties
of ambient light to convey information. Zhang et al. [337] design U-Star, a system consisting of
passive underwater optical identification (UOID) tags and DL-enabled camera-based tag readers,
providing objects/human identification and location-based services as underwater navigation as-
sistance in scenarios such as dive and rescue. U-Star employs a 3D multi-color cube-shaped design
for the UOID tags and adopts the CycleGAN-based underwater denoising model that converts un-
derwater UOID images into clear ones. Experiments under different underwater scenarios show
that U-Star achieves a bit error rate of 0.003 at 1 m and less than 0.05 at up to 3 m, which is sufficient
for guiding underwater navigation. Ghiasi et al. [71] present SpectraLux, an approach to transmit
and decode data using low-power liquid crystal cells. It utilizes the physical characteristics of lig-
uid crystal shutters toggling between being translucent and opaque when switching the voltage
from 0 to 5 V, emitting different spectrums of the incident light. SpectraLux adopts a spectrometer
that captures 256 bands of incoming light and achieves multi-symbol decoding by feeding PCA-
reduced spectrum features to CNNs for classification. SpectraLux shows the potential of utilizing
the wide spectrum of ambient light in passive-VLC.

ACM Trans. Sensor Netw., Vol. 21, No. 1, Article 9. Publication date: January 2025.



9:40 S. Iman Siam et al.

4.4 LoRa/LoRaWAN

LoRa is a rising low-power wide-area communication technology. LoRa’s physical layer adopts
chirp spread spectrum (CSS) modulation, which is known for its resistance to interference and
capacity to travel long distances, making it particularly suitable for various IoT applications. Lo-
RaWAN refers to the protocol and system architecture for networks of LoRa nodes, which is an
open standard that ensures inter-operability among different manufacturers and developers. As
summarized in Figure 14, existing works on Al-empowered LoRa/LoRaWAN can be grouped into
two categories: link estimation and modulation/demodulation enhancement.

Link Estimation. To study LoRa link coverage in the wild in supporting smarter LoRa deployments,
Liu et al. [166] propose DeepLoRa, a DL-based framework for LoRa path loss estimation of long-
distance links in real-world environments. To do so, DeepLoRa extracts land-cover types along a
LoRa link from multi-spectral remote sensing images, and exploits the order dependency of the
land-cover sequence by utilizing BiLSTM for path loss estimation. Experimental results on a real
LoRaWAN dataset show that DeepLoRa is able to achieve less than 4-dBm estimation error, which
is 2x smaller than state-of-the-art approaches. Moreover, the study conducted by Ren et al. [220]
further corroborates that DeepLoRa outperforms other link estimation approaches in terms of
LoRa localization accuracy.

Modulation/Demodulation Enhancement. Enhancements in LoRa modulation and demodulation are
essential for improving the performance, efficiency, and reliability of data transmission in LoRa sys-
tems. For example, Li et al. [139] present NELoRa, a neural-enhanced LoRa demodulation frame-
work that takes advantage of the powerful feature learning capability of DL to enable LoRa com-
munication under ultra-low SNR. The key idea of NELoRa is the dual-DNN design: the first DNN
is used as a noise filter to extract clean chirp symbols from the noisy LoRa packets, and the second
DNN is used as a decoder that decodes the extracted clean chirp symbols. Experimental results
show that NELoRa outperforms the standard LoRa demodulation method under a wide range of
LoRa configurations in both indoor and outdoor deployments. Yang and Du [300] propose LLDPC,
which enables low-density parity-check (LDPC) coding in LoRa networks under the inspiration of
the wide usage of LDPC coding in other wireless networks. LDPC requires the log-likelihood ratio
for decoding, which is not applicable to the CSS modulation adopted by LoRa. Moreover, the main-
stream decoding algorithms for LDPC need multiple iterations to achieve effective error correction,
resulting in long decoding latency that exceeds the maximum ACK time of the LoRa gateway. To
tackle these challenges, LLDPC extracts the log-likelihood ratio by treating CSS demodulation as
a classification task and outputs the probability of all possible decoding results. It further utilizes a
GNN for fast belief propagation to achieve efficient LDPC decoding. Du et al. [52] propose SRLoRa,
which decodes LoRa signals by leveraging spatial diversity from multiple gateways. Specifically,
SRLoRa employs CNN-based interleaving denoising layers to extract features under ultra-low SNR
and consolidates features from different gateways in the merging layers. The merged signals with
accumulated energy are then fed to a CNN decoder for decoding. Last, Li et al. [141] further es-
tablish an encoding framework, providing four features, including on-air time, selective initial
frequency, chirp repeating, and symbol hopping, to combat various challenges of weak signals,
signal collisions, and environment dynamics. On the decoder side, the neural-enhanced decoder
is adopted and optimized for decoding the symbols with symbol hopping based encoding in terms
of input and parameter sizes.

4.5 Other Networks

Besides the wireless networks mentioned previously, Al has also been applied to various other
types of networks for diverse objectives. For instance, ZiSense [349] is proposed to enhance the
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energy efficiency of sensor nodes in co-existence environments by using a sequence of received
signal strength values to predict the presence of ZigBee signals through a decision tree model.
Shi et al. [230] propose to improve the configuration of wireless mesh networks by DL-based do-
main adaption that adapts models for network configuration prediction trained on simulation to
its corresponding physical network. In particular, the authors develop a teacher-student neural
network that learns robust configuration prediction models from large-scale inexpensive simula-
tion data with minor physical measurements to close the simulation-to-reality gap. Perez-Ramirez
et al. [214] present DeepGANTT, a DL-based scheduler that leverages a GNN to provide a near-
optimal solution for the NP-hard carrier scheduling problem in RFID backscatter networks. In
those networks, battery-free RFID tags harvest energy from excitation in the environment, and
IoT devices equipped with RFID readers provide them with the carrier for communication. To
avoid collisions, DeepGANTT trains a carrier scheduler based on the GNN to handle and capture
the interdependence of nodes in the irregular network topology graphs. DeepGANTT breaks the
scalability constraints of the optimal scheduler used for training and can generalize to networks
6x larger in the number of nodes and 10X larger in the number of tags. Sarkar et al. [225] propose
DeepRadar, which utilizes DL to detect radar signals and estimate their spectral occupancy for
incumbent protection and efficient spectrum sharing. This approach involves spectrogram image
learning based on the YOLO (You Only Look Once) model that learns an object detection model
using spectrograms, including both radar and non-radar data. Last, Garg and Roy [68] design Sir-
ius, a self-localization system, where the node computes its own location onboard, using a single
receiver for low-power IoT nodes to close the gap between the needs for accurate and robust local-
ization and the lack of efficient solutions in the low-power scenario. Instead of relying on strictly
synchronized antenna arrays to estimate AoA and ToF, which requires resources that low-power
nodes do not possess, Sirius uses antennas whose gain pattern can be reconfigured by the on/off
of controllable switches in real time to embed direction specific encoding to the received signal.
The gain patterns are passed to Al models to estimate the angle in degrees. Experimental results
show that Sirius is able to obtain competitive performance compared to state-of-the-art antenna
array-based systems, achieving 7-degree median error in AoA estimation and 2.5-m median error
in localization.

5 Domain-Specific AloT Systems
5.1 Healthcare and Well-Being

One important application domain of AloT systems is healthcare and well-being. As summarized
in Figure 15, existing works on AloT systems for healthcare and well-being can be grouped into
four categories: vital sign monitoring, in situ illness detection and monitoring, assistive technology,
and personal health insight generation.

Vital Sign Monitoring. One of the primary use cases of AIoT systems developed for healthcare and
well-being is monitoring an individual’s vital signs, such as cardiac signals, breathing, and blood
pressure. For instance, one of the key challenges of vital sign monitoring is motion artifacts caused
by body movements. Chen et al. [37] introduce MoVi-Fi to monitor breathing and heartbeats in a
contactless way using RF signals under the existence of body movements. MoVi-Fi utilizes deep
contrastive learning to separate vital signs from the body movements and further uses an encoder-
decoder model to refine and recreate the vital sign waveforms. Zhang et al. [335] observe that
vital signs including breathing and heartbeats cause subtle facial vibrations. They propose to use
the motion sensors inside the commodity AR/VR headsets to capture those subtle facial vibrations
and employ an LSTM-based model to reconstruct the vital sign waveforms. VitaMon [102], RF-SCG
[79], and VocalHR [283] focus on monitoring cardiac signals. Specifically, VitaMon [102] proposes
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Fig. 15. Summary of topics related to domain-specific AloT systems.
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to use video to measure the inter-heartbeat interval. Since blood absorbs more light than other
tissues, video can effectively detect the changes in blood vessel volume that occur with each heart-
beat. Based on this principle, VitaMon employs a CNN to identify and reconstruct the peak of each
heartbeat across consecutive facial image frames. RF-SCG [79], however, uses mmWave to recon-
struct the seismocardiogram waveforms that detect fine-grained cardiovascular events. RF-SCG
emits mmWave radar signals and captures the reflections from the human body, and proposes a
CNN-based model to translate the mmWave reflections to seismocardiogram waveforms. VocalHR
[283] proposes to infer cardiac activities from human voice production. It extracts phonation and
articulatory features from human voice that are related to cardiac activities, and transforms these
vocal features into cardiac activities through an LSTM-based model. Last, Cao et al. [27] introduce
Crisp-BP, a blood pressure monitoring system that leverages wrist-worn devices equipped with

ACM Trans. Sensor Netw., Vol. 21, No. 1, Article 9. Publication date: January 2025.



Artificial Intelligence of Things: A Survey 9:43

Vital Sign In-situ lliness Detection Assistive Technology Personal Health

Monitoring and Monitoring Insight Generation

8 e 58 .8

fRespiratory Cardiac Mental Ear

Facial Pill

. lliness Diseases Paralysis Identification

: 0)' EIE Insights :

* || @ee fﬁ@ B >
<X B V) 9] : @ 1) [
Blood : Pulmonary  Hearing Sign Language : Mental :

. Health )

Pressure

Diseases  gcreening. Translation

Fig. 16. Summary of AloT systems for healthcare and well-being.

PPG sensors. The sensors emit green and infrared light, which measures volume changes in blood
vessels, which are processed by a BILSTM-based model to estimate both diastolic and systolic blood
pressure.

In situ Illness Detection and Monitoring. Another important use case of AloT systems developed
for healthcare and well-being is to detect or monitor the progress of illnesses, such as mental ill-
nesses and lung and ear diseases, in non-clinical settings. Mental illnesses are a leading cause of
disability worldwide [197]. One pioneering work for mental illnesses is StudentLife [261], where
the study identifies relationships between smartphone sensor data and students’ mental health and
academic performance. As another pioneering work in this domain, Saeb et al. [222] propose to
use smartphone GPS data and phone usage data to capture and detect various daily-life behavioral
markers from individuals with depression and utilize AI models to analyze the collected sensor
data to infer depressive symptom severity. Adler et al. [2] focus on leveraging smartphone sensor
data to predict early warning signs of psychotic relapse in patients with schizophrenia spectrum
disorders. They develop encoder-decoder neural network models that could identify behavioral
anomalies occurring within 30 days before a relapse. Parkinson’s disease is another use case. It
is observed that non-speech body sounds [216], such as breathing and throat-clearing sounds,
are highly correlated to Parkinson’s disease. Zhang et al. [325] propose PDVocal, which lever-
ages everyday smartphone voice activities such as calls and chats to capture these sounds and
employs a ResNet-based DL model to assess the presence probability of Parkinson’s disease. In
terms of lung diseases, Yin et al. [312] introduce PTEase, a 3D-printed mouthpiece that attaches
to a smartphone for pulmonary disease detection. The smartphone emits acoustic waves via its
speaker. These waves travel through the airway and are captured by the smartphone’s microphone,
providing detailed information about the user’s airway conditions, which is crucial for pulmonary
disease detection and lung function assessment. Similarly, Song et al. [240] introduce SpiroSonic, a
smartphone-based system for conducting spirometry tests by monitoring the motion of the chest
wall during breathing. SpiroSonic emits an ultrasound wave from the smartphone speaker and
captures the reflected wave from the chest wall. It extracts specific features such as the maximum
velocity of chest wall motion, the chest wall displacement during the first second of exhalation,
and the peak chest wall displacement. These features are then used as inputs to a regression neu-
ral network, which provides an assessment of the user’s lung function. In terms of ear diseases,
Jin et al. [116] propose EarHealth, an earphone-based system that detects three ear diseases: oti-
tis media, ruptured eardrums, and earwax blockages. By emitting sound waves into the ear and
capturing the echoes using its integrated microphone, EarHealth analyzes the captured data that
contains crucial information about the ear through a multi-view DL model to detect and monitor
these ear diseases. Chan et al. [28] present the development and clinical evaluation of a low-cost
otoacoustic emissions (OAEs) probe designed to facilitate early hearing screening. Conventional
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OAE tests require highly sensitive and expensive acoustic hardware, making it inaccessible to low-
and middle-income countries. To fill this gap, the authors propose to develop a low-cost probe
using off-the-shelf microphones and earphones connected to a smartphone. The probe functions
by emitting two pure tones through the earphones, prompting the cochlea to generate distortion-
product OAEs, which are then captured by a microphone. In another work, Chan et al. [29] further
improve the design of the hearing screening probe using wireless earbuds and propose OAEbuds,
which employs a two-step protocol combining frequency-modulated continuous wave signals and
wideband pulses to separate OAEs from in-ear reflections. The clinical study shows that OAEbuds
achieves sensitivity and specificity comparable to commercial medical devices, demonstrating its
potential to make hearing screening more affordable and accessible.

Assistive Technology. AloT systems for healthcare and well-being have also been developed as assis-
tive technologies, which help individuals with disabilities perform tasks that might otherwise be
difficult or impossible. For instance, Zeng et al. [316] introduce MobileDeepPill, a mobile assistive
technology that automatically identifies prescription pills in real-world settings using smartphone
cameras. MobileDeepPill identifies pills by employing a multi-CNN model to extract a pill’s three
distinctive characteristics, including color, shape, and imprints. It also adopts knowledge distilla-
tion to reduce the size of the multi-CNN model for on-device inference. Xiong et al. [282] propose
iBlink, a smart glasses based assistive technology for individuals with facial paralysis. Most in-
dividuals with facial paralysis are not able to blink on one side of the face, which could lead to
blindness. iBlink aids individuals with facial paralysis to blink by detecting the non-paralyzed
side’s blinking using a camera and CNN and applying electrical stimulation to trigger blinking on
the paralyzed side. As another line of research, DeepASL [56] and SignSpeaker [93] focus on devel-
oping sign language translation systems that bridge the communication gap between deaf people
and people with normal hearing ability. Specifically, DeepASL uses infrared light based sensing
to capture and extract skeleton joint information of fingers, palms, and forearms when the user
performs sign language. However, SignSpeaker derives sign-related information using motion sen-
sors from a smartwatch. Both systems utilize the connectionist temporal classification technique
to construct the sentence-level translation from the word-level translation.

Personal Health Insight Generation. The emergence of LLMs opens up a wide range of possibilities
in the application domain of healthcare and well-being. One of the most promising capabilities is
to generate personal health insights based on data collected from health-related sensors inside an
individual’s mobile and wearable devices. For example, Cosentino et al. [42] introduce PH-LLM, a
personal health LLM based on a fine-tuned version of Gemini designed to generate insights and
recommendations for improving sleep and fitness behaviors. PH-LLM collects data from multi-
ple sources, including medical records, wearable sensor data, and self-reported health data from
each individual. By integrating this information, it seeks to understand each individual’s unique
health profile and to provide tailored health recommendations and predictions. Similarly, Merrill
et al. [191] present PHIA, a personal health insights agent to analyze behavioral health data from
wearable sensors using LLMs. PHIA can address both factual and open-ended health queries, and
generate personalized, actionable health insights with high accuracy. Last, Englhardt et al. [54]
explore the potential of using LLMs to derive clinically relevant insights from multi-sensor data
collected from mobile and wearable devices. The authors develop chain-of-thought prompting
methods to facilitate LLMs in reasoning about activity, sleep, and social interaction data, and their
relation to mental health conditions such as depression and anxiety. While the authors initially
focused on using LLMs for diagnostic task, they found greater potential in generating detailed,
natural language summaries that integrate multiple data streams, offering a more comprehensive
understanding of a patient’s health condition.
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Fig. 17. lllustration of the architecture of AloT systems for video streaming.

5.2 Video Streaming

Video streaming involves the continuous and seamless transmission of video and audio content
from a server to a client over a network. It has become one of the most widely used technologies
that enables services such as live streaming and video conferencing, which are integral to people’s
daily lives. As summarized in Figure 15, existing works on AloT systems for video streaming can
be grouped into three categories: adaptive video streaming, video enhancement, and efficiency
optimization.

Adaptive Video Streaming. One key challenge of video streaming is to maintain a consistent high-
quality viewing experience and uninterrupted playback when network bandwidth fluctuates due
to factors such as congestion, interference, and user mobility. Adaptive video streaming addresses
this challenge by dynamically adjusting the video quality in real time based on the available net-
work bandwidth, ensuring a smoother viewing experience. For example, Mao et al. [184] propose
Pensieve, an adaptive video streaming framework that employs RL to autonomously learn adap-
tive bitrate (ABR) algorithms to eliminate the need for pre-programmed control rules. Zhou et al.
[351] present Concerto, which identifies an important factor of poor quality of experience (QoE):
the lack of coordination between application-layer video codecs and the transport-layer protocols.
To address this issue, Concerto introduces a video bitrate adaptation strategy based on deep imita-
tion learning, which is able to identify the most suitable bitrate for codec and transport layers and
successfully boosts the QoE. While both Pensieve and Concerto exhibit their potential, a notable
challenge arises from the fact that the learning models are commonly trained within simulators
or emulators. Unfortunately, this can result in poor performance when applied in real-world sce-
narios. Zhang et al. [327] present OnRL, which effectively bridges the gap between simulation
and real-world scenarios by introducing an online RL framework designed for real-time mobile
video telephony applications. One challenge with RL is that the algorithm might make incorrect
exploitation decisions. OnRL addresses this issue by introducing a hybrid learning approach: if
the RL model performance deviates from the expected, the system switches to a rule-based ABR
algorithm; otherwise, it continues to follow the RL strategy. Another challenge with RL-based ap-
proaches is that acquiring suitable training data and creating a suitable environment is not trivial.
Yan et al. [299] address this challenge by developing an ABR algorithm and training it directly
within the real deployment environment using in situ data. As another line of research, Lee et al.
[133] introduce PERCEIVE, which utilizes a two-stage LSTM model for cellular uplink channel
throughput prediction and adapts the video encoding bitrate based on the prediction results to im-
prove user experience in mobile live streaming applications. Zhang et al. [326] show that attempts
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to combine such hybrid approaches do not effectively utilize the combined strengths of both meth-
ods, often resulting in suboptimal performance. Therefore, they propose Loki, which strives for a
more profound collaboration of rule-based methods with learning-based methods. This is achieved
by converting a “white-box” rule-based approach into a similar “black-box” neural network model
using a customized imitation learning model. In another work, Zhang et al. [340] introduce SENSEI,
a streaming optimization scheme that capitalizes on users’ varying sensitivity levels to different
segments of a video. This approach is rooted in the understanding that users are more attuned
to crucial moments (e.g., goal-scoring moments in a sports video) and are more displeased by
buffering interruptions during these instances compared to less critical parts. Given that, SENSEI
reduces the current video quality to conserve bandwidth, which can later be allocated to deliver
higher quality during moments of heightened user sensitivity. This strategy enhances the QoE
within the same bandwidth constraints by efficiently adapting video quality to users’ sensitivity
patterns. Last, Dasari et al. [46] introduce Swift, an adaptive video streaming system featuring a
layered encoder. Instead of encoding video segments separately in various qualities, Swift encodes
the video segments into layers. In doing so, it significantly reduces bandwidth usage and achieves
a quicker response time to fluctuations in network conditions.

Video Enhancement. Another key challenge of video streaming is the inherent limitation in the
resolution of the original source video, which can affect the viewing experience on high-definition
displays. Video enhancement techniques address this challenge by enhancing the quality of videos
by upgrading their resolution beyond the resolution of the original source video, thereby provid-
ing a better viewing experience for users with high-definition displays. Yeo et al. [307] introduce
NAS, a super-resolution-based video delivery framework that leverages client-side computation
and DNNs to enhance user QoE. Their approach involves combining scalable DNNs with adaptive
predictions that can adjust their processing requirements dynamically in response to the available
resources. RL is used to determine the best time to download a DNN model and choose the ap-
propriate video bitrate for each video segment. However, one key limitation of NAS [307] is its
high computational demand and power consumption, making it less competitive to be deployed
on mobile devices. To make video enhancement feasible for mobile devices, Yeo et al. [306] pro-
pose NEMO, which capitalizes on the inherent temporal redundancy in videos by applying super-
resolution to only some specific frames while reusing the super-resolution results to enhance the
entire video. However, due to the involvement of resource-intensive offline computation, NEMO is
not ideal for live video streaming. In contrast, Kim et al. [121] design LiveNAS specifically for live
video streaming scenarios. LiveNAS utilizes real-time online training and incorporates recently
trained outcomes for super-resolution within the context of live video. Similarly, Yeo et al. [308]
present NeuroScaler, a streamlined and scalable neural-enhancing framework for live video stream-
ing. NeuroScaler focuses on reducing the costs of live video streaming and includes cost-reducing
algorithms for video super-resolution and a specialized hybrid video codec that drastically cuts
encoding expenses for selective super-resolution outputs. Zhang et al. [321] move one step further
and propose YuZu, a super-resolution-based video streaming system for 3D video streaming. This
system addresses key limitations of existing 3D video streaming methods, such as high bandwidth
consumption and the ineffectiveness of viewport-based streaming when the entire scene is within
the view. Last, Park et al. [211] explore omnidirectional video (i.e., 360-degree video) streaming,
and develop OmniLive, a super-resolution-based omnidirectional video streaming system that uti-
lizes GPU to sustain a high super-resolution quality at 30 frames per second across a range of
mobile devices.

Efficiency Optimization. Enhancing the efficiency of video streaming services is also important.
Tang et al. [247] present CHESS, a video popularity prediction scheme designed to forecast the
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future popularity of videos. Since only a small fraction of videos gain significant popularity
and contribute to the majority of watch time, by prioritizing these popular videos rather than
processing all videos uniformly, CHESS effectively allocates processing resources to optimize the
user experience. Omnidirectional video streaming consumes more bandwidth compared to stan-
dard video streaming. One potential solution for bandwidth optimization is the viewport-driven
approach, which focuses on streaming only the region that the viewer is watching (viewport)
in high quality. However, this approach comes with constraints, as it requires predicting the
viewer’s future gaze direction, and any prediction errors can lead to rebuffering or drops in
quality. To address this challenge, Guan et al. [76] develop Pano, a method that leverages the
sensitivity of users to variations in quality distortion, which effectively balances the tradeoff
between quality and bandwidth allocation. This approach allows for increasing quality to the
highest noticeable extent when there is surplus bandwidth and decreasing quality to an almost
unnoticeable degree when bandwidth is limited. Improving QoE for mobile omnidirectional video
streaming is crucial, particularly in bandwidth-limited wireless networks. Previous research on
omnidirectional video streaming has attempted optimization based on head movement trajectory
but often falls short in achieving precise head movement trajectory predictions. To address this
challenge, Wang et al. [262] introduce SalientVR, a framework that integrates gaze information
into a saliency-driven mobile 360-degree video streaming system. SalientVR holds the potential to
elevate the QoE by utilizing user gaze patterns to deliver content more accurately and effectively
for mobile VR devices. Last, Rudow et al. [221] introduce Tambur, a scheme designed to address
bandwidth-efficient loss recovery for video conferencing. Existing streaming codes fall short
of meeting the specific demands of video conferencing due to the frequent loss of packets,
often occurring in bursts, which can impede the rendering of video frames. Tambur introduce a
learning-based predictive model for effectively configuring bandwidth overhead and achieves a
noteworthy reduction in both the frequency and cumulative duration of freezes.

5.3 Video Analytics

Video cameras have been deployed at scale at places such as streets and intersections, stores and
shopping malls, and homes and office buildings. Analyzing video streams collected from these dis-
tributed cameras enables many applications such as security and surveillance, traffic management,
and customer behavior analysis. As summarized in Figure 15, existing works on AloT systems for
video analytics can be grouped into four categories: continuous learning, runtime adaptation, effi-
ciency optimization, and query optimization.

Continuous Learning. In video analytics, it is inevitable that new video data emerge. Therefore, it is
critical for video analytics systems to adapt to such data drift. Although continuous learning can
effectively tackle data drift by periodically retraining models on new data, supporting continuous
learning on video analytics systems is not trivial. Bhardwaj et al. [17] propose Ekya, a video ana-
lytics system that addresses the challenge of jointly supporting inference and continuous learning
on edge servers. The key idea of Ekya is to identify models that need retraining the most while
balancing the resources for joint retraining and inference. Ekya can enhance the performance of
video analytics, particularly in dynamically changing environments where data drift is a signifi-
cant factor in performance. However, since the retraining process consumes the majority of the
time, relying solely on model retraining may not be resource efficient for real-time video analytics
tasks. Khani et al. [120] propose RECL, an end-to-end system that integrates model reusing with
model retraining to overcome this problem. RECL performs continuous model retraining, as well
as leverages historical specialized DNNs, and shares this model zoo across various edge devices.
Additionally, RECL efficiently allocates GPU resources by utilizing an iterative training scheduler,
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Fig. 18. lllustration of continuous learning for video analytics.

which prioritizes retraining jobs based on their progression rate. RECL shows remarkable improve-
ment in both accuracy and mAP for object detection and image classification tasks, outperforming
all baseline models, including Ekya.

Runtime Adaptation. Another critical capability of video analytics systems is runtime adaptation.
Adapting camera parameters and settings has a significant impact on video analytics performance,
particularly due to weather and lighting conditions. To maintain high accuracy, it becomes essen-
tial to adapt camera parameters in response to these conditions. However, the task of identifying
the optimal camera settings for specific scenes is challenging. To mitigate the impact of environ-
mental condition changes on video analytics performance, Paul et al. [212] propose CamTuner, an
RL-based approach to dynamically adapt non-automated camera parameters. Apart from camera
parameters, various other factors within a video analytics pipeline can impact its performance, in-
cluding frame resolution, frame sampling rate, and the choice of DNN models. Collectively, these
components can be referred to as the overall configuration. Choosing a suitable configuration
can impact both the resource utilization and accuracy of a video analytics application. Although
adapting model configurations frequently can optimize resource usage, it incurs high costs due to
the large number of possible configurations. To address this issue, Jiang et al. [110] introduce
Chameleon, a technique for achieving a balance between resource allocation and accuracy by
choosing the appropriate neural network configuration. Zhang et al. [322] propose AWStream,
an adaptive stream processing system with low latency and high accuracy. AWStream’s main con-
tribution is its runtime system that consistently monitors and adjusts to network conditions. It
optimizes streaming data rate based on available bandwidth and employs learned Pareto-optimal
configurations to maintain high accuracy. Zeng et al. [317] propose Distream, which focuses on
runtime adaptation to the dynamic workloads generated by distributed video cameras. Depending
on the deployment location, the number of objects captured by each camera and its corresponding
workload is different and varies throughout the day. The key idea of Distream is to adaptively bal-
ance the workloads across the cameras and also partition the workloads between cameras and the
edge server. As such, Distream fully utilizes the compute resources at cameras and the edge server
to enhance system performance. Last, Lu et al. [179] propose Turbo, which capitalizes on manag-
ing latent computing resources to enhance overall performance, particularly in object detection
tasks. The proposed approach revolves around a multi-exit GAN structure, which is paired with an
adaptive scheduler that dynamically determines the optimal enhancement level for each incoming
frame, thereby maximizing object detection accuracy in real time. The adaptive scheduler makes
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on-the-fly decisions about the most appropriate enhancement levels based on the current resource
availability. In terms of results, Turbo presents remarkable improvements in absolute mAP.

Efficiency Optimization. Enhancing the efficiency of video analytics systems is also important. The
widespread deployment of video cameras, numbering in the thousands and operating continuously,
leads to a massive amount of data that needs to be transmitted and processed. Transmitting and
processing all video frames from the edge to the server can be extremely expensive due to the
bandwidth constraints and computational resources required. Canel et al. [23] propose FilterFor-
ward, which only selects and transmits the relevant video frames to save bandwidth. Similarly,
Li et al. [151] introduce Reducto, another filtering-based technique that implements on-camera
filtering and dynamically adjusts filtering decisions to cater to live video analytics requirements.
Experimental results show that Reducto outperforms FilterForward by 93% in terms of frame fil-
tering efficiency. As another line of research, Du et al. [53] introduce AccMPEG. The proposed key
techniques involve the design of a cheap camera-side model to efficiently decide which regions
of the frames should be encoded as high quality and which regions should be subjected to lower-
quality encoding. Additionally, AccMPEG allows for quick customization to different DNNs, with
training times reduced to mere minutes, further demonstrating its efficiency. Hwang et al. [103]
introduce CoVA, a cascade architecture that reduces the need for full video decoding. By leverag-
ing compressed-domain analysis, CoVA efficiently detects and tracks objects across frames, only
decoding a minimal subset of frames necessary for DNN processing. CoVA’s design not only op-
timizes computational efficiency but also supports both temporal and spatial queries, broadening
its applicability in video analytics. Last, video analytics systems often host multiple tasks like ob-
ject detection, face recognition, and semantic segmentation, where different models can be used
for different tasks. Given the limited GPU resources of edge devices, attempting to load all mod-
els can exceed GPU memory limit. Padmanabhan et al. [207] introduce GEMEL, a model merging
technique that can efficiently merge and share layers from models with the same architectures. In
doing so, GEMEL effectively reduces the number of swaps required and the amount of data loaded
into GPU memory, resulting in fewer frame drops and improved accuracy.

Query Optimization. A video analytics query is an inquiry submitted to a video analytics system to
retrieve useful information and insights from video data. Summarizing a video scene with object
count is a common query type to get insight from a video stream. Due to the energy constraint
of edge devices, continuously transmitting video streams is a challenging task. Elf, presented
by Xu et al. [292], is a framework designed to continually summarize video scenes through the
aggregation of object counts, all while operating within the confines of limited energy resources.
Rather than transmitting raw video data, the approach involves sending only numerical data, such
as count numbers or other relevant query-related values. In many camera setups, a significant
portion of cameras often remain inactive and unqueried. This scenario can be referred to as “zero
streaming,” where the inactive cameras store video data in their local storage and communicate
with the server only when a specific query is requested. Xu et al. [291] propose DIVA, an approach
to effectively query video analytics on zero-streaming cameras. When it comes to tasks like
retrieval, tagging, and counting, DIVA consistently demonstrates superior performance compared
to other baseline methods. As zero-streaming cameras primarily store data on their local storage,
a drawback of DIVA is its susceptibility to video data loss in the event of camera storage failures.
Video analytics queries can sometimes raise concerns about privacy violations, as users may
request sensitive information about others, potentially infringing on their privacy. Cangialosi et al.
[24] introduce Privid, a method aimed at extracting valuable information from video data without
compromising privacy. Privid’s approach involves breaking the video into smaller segments and
executing processing code on each segment individually rather than processing the entire video at
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Fig. 19. lllustration of the architecture of AloT systems for autonomous driving.

once. A Privid query comprises a set of statements in a PrividQL language, similar to SQL, along
with executable video processing components. They run an experiment on video data collected
from three cameras and apply Detectron2 for object detection and DeepSORT for object tracking.
The rise of 5G technology has propelled the expansion of ultra-fast video analytics, largely due
to the growing need for low-latency processing capabilities. Tutti, developed by Xu et al. [286],
combines the 5G radio access network and edge computing at the user level to ensure optimal
performance for video analytics tasks with low latency. Tutti achieves a remarkable reduction
in response latency and demonstrates substantial progress in enhancing QoE for video analytics
applications. In response to diverse applications, video analytics platforms have gradually moved
away from providing pre-defined video processing results. Instead, they now enable users to
utilize their customized models, all while ensuring a consistent commitment to specified accuracy
standards. Recent optimization efforts involve preprocessing video data in advance to construct
indices that can expedite subsequent queries. However, these optimizations were tailored for
scenarios where models were pre-defined and not user provided. Agarwal and Netravali [3]
introduce Boggart, a comprehensive pipeline for a video analytics platform that can function as
a versatile accelerator using the model provided by the users.

5.4 Autonomous Driving

Autonomous driving enables a vehicle to navigate and operate partially with or fully without
human intervention. By fusing real-time data collected through IoT sensors with Al-driven per-
ception and decision-making algorithms, AloT systems are contributing to making autonomous
vehicles safer, more efficient, and adaptable to changing road conditions. As summarized in
Figure 15, existing works on AloT systems for autonomous driving can be grouped into four
categories: perception enhancement; localization, tracking, and mapping; automatic testing; and
control and actuation.

Perception Enhancement. Perception enhancement involves the use of Al to process data from var-
ious sensors such as cameras, LIDAR, and radar more accurately, allowing an autonomous vehicle
to have a more comprehensive understanding of its surroundings. While LiDAR-based systems
offer detailed spatial mapping, they fail in adverse weather conditions because LIDAR beams strug-
gle to penetrate through elements like fog. To address this limitation, Bansal et al. [13] introduce
Pointillism, an innovative concept called cross-potential point clouds, which leverages the spatial
diversity generated by utilizing multiple radar systems to effectively address the issues related
to noise and sparsity in radar-based point clouds. Single-vehicle 3D sensors have two primary
limitations: susceptibility to occlusion by non-transparent objects and reduced detail perception
at greater distances. Zhang et al. [341] introduce EMP, a collaborative approach where all nearby
connected autonomous vehicles share sensor data with each other. This sharing allows each
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vehicle to create a more comprehensive and higher-resolution perception compared to relying
solely on its own sensors. The emerging paradigm of infrastructure-assisted autonomous driving
leverages infrastructure elements like smart lampposts to assist autonomous vehicles. However, a
challenge arises when the vehicle and infrastructure point clouds do not hold a significant overlap
or similarity, resulting in a drop in accuracy and delays. Vi-Eye, presented by He et al. [91], is a
pioneering system capable of aligning vehicle-infrastructure point clouds with centimeter-level
accuracy in real time. VIPS, developed by Shi et al. [231], takes this capability a step further, achiev-
ing decimeter-level accuracy while still maintaining real-time performance. VIPS distinguishes
itself from Vi-Eye by adopting an alternative strategy. While Vi-Eye relies on highly accurate point
cloud transmission between infrastructure and vehicles, VIPS focuses on aligning two graphs
generated from simplified and diverse representations of objects detected by the vehicle and
infrastructure. He et al. [90] present AutoMatch, an innovative solution by utilizing traffic cameras
to enhance the perception and localization capabilities of autonomous vehicles, particularly at
intersections. The pioneering aspect of the system is that it enables vehicles to expand their range
of perception by correlating images taken by both traffic cameras and on-vehicle cameras.

Localization, Tracking, and Mapping. Localization is the process of determining the precise position
of a vehicle within a known environment by comparing sensor data to pre-existing maps or ref-
erence points. Accurate localization in environments like tunnels and underpasses, where global
navigation satellite system signals are unavailable, can be a challenging task in autonomous driv-
ing. MVP [255] address this challenge by extracting magnetic fingerprints from anomalies in the
geomagnetic field. These magnetic fingerprints are then compared to a magnetic map, allowing
for precise positioning of vehicles without relying on global navigation satellite system signals. In
the context of autonomous driving, tracking refers to the continuous monitoring and prediction
of the movements and trajectories of vehicles on a roadway. VeTrac [249] employs traffic cam-
eras as a sensing network to reconstruct large-scale vehicle trajectories, addressing the limitations
of GPS-dependent solutions. It achieves this through a vision-based vehicle detection and track-
ing algorithm applied to video frames collected from the traffic cameras. Lin et al. [155] identify
three primary computational bottlenecks in autonomous driving systems: object detection, object
tracking, and localization, which collectively consume more than 94% of the computational re-
sources in the system. In response to these challenges, the authors have developed an end-to-end
autonomous driving system that draws from the most cutting-edge system designs found in both
academic research and industry practices. Mapping is a continuous process that involves creating
and continually updating a detailed map of the surroundings of a vehicle through the use of vari-
ous sensors such as LIDAR, cameras, and radar. Maps used in autonomous driving systems require
continuous updates to account for significant changes in the environment, which can affect the
features visible to a vehicle. CarMap, developed by Ahmad et al. [4], offers an innovative solution
by collecting 3D maps from vehicles equipped with LiDAR and advanced cameras, ensuring near-
real-time map updates. As each vehicle travels through a road segment, it uploads map updates to
a cloud service over a cellular network, making these updates accessible to other vehicles.

Automatic Testing. Automatic testing involves identifying and analyzing various events or sce-
narios that autonomous vehicles may encounter on the road and testing the vehicle’s Al-driven
systems to ensure that they respond appropriately to these events. BigRoad [165] provides a cost-
effective and dependable solution for collecting extensive driving data by utilizing a smartphone
and an IMU installed within the vehicle. This system extracts internal driver inputs, such as steer-
ing wheel angles, driving speed, and acceleration, and also discerns external perceptions of road
conditions, including the distinction between wet and dry surfaces. This information can be highly
valuable for various purposes, including autonomous vehicle testing and evaluation. Automatic
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Fig. 20. lllustration of the architecture of AloT systems for AR/VR/MR.

testing of autonomous driving technology is a complicated process due to the necessity of ad-
dressing unusual events and corner cases like road obstacles, pedestrians on highways, or wildlife
encounters. To address this challenge, Li et al. [147] introduce an automatic system that utilizes an
algorithm to identify and respond to unusual driving events effectively. The results of detecting
unusual events can be valuable for retraining and enhancing a self-steering algorithm, particularly
in more complex driving scenarios.

Control and Actuation. Autonomous control systems manage components that interact with their
environments while making decisions independently, without human intervention. Prior works
in autonomous AIoT control systems involve multiple stages, including data acquisition from sen-
sors, processing with DNNs, and control of configuration parameters to interact with the exter-
nal environment. The multiple stages suffer from performance bottlenecks due to the difficulty
in tuning each step. For instance, even lightweight DNNs for object detection have millions of
parameters and are too complex for embedded platforms. This complexity makes it infeasible to
run multi-stage AloT control algorithms in real time on platforms with memory and computa-
tion constraints. Sandha et al. [224] present Eagle, an end-to-end deep RL solution that trains a
neural network policy to directly use images as input for controlling the PTZ camera. The pro-
posed system bypasses the conventional multi-stage process of object identification, tracking, and
control by directly mapping raw photos to control actions using a neural network policy. Their
work demonstrates Eagle’s effectiveness in various scenarios and its successful transfer from sim-
ulation to real-world applications, making significant contributions to the fields of edge Al and
autonomous camera control.

5.5 Augmented, Virtual, and Mixed Reality

AR, VR, and MR redefine our perception of the world. Specifically, AR enriches reality by
overlaying digital content on our surroundings, VR immerses us in entirely digital environments,
and MR provides an interactive experience between the virtual and real worlds. As summarized
in Figure 15, existing works on AloT systems for AR/VR/MR can be grouped into four categories:
object detection and tracking, user inputs, performance enhancement, and omnidirectional AR.

Object Detection and Tracking. Object detection and tracking is one of the most fundamental tasks
in AR/MR. Liu et al. [164] present an efficient offloading-based object detection and tracking system
for AR/MR, which offloads the object detection task to the cloud while conducting tracking on AR
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devices. The key technique incorporated in the system is a dynamic region-of-interest encoding
technique that encodes regions where objects are not likely to be detected in lower quality. As
such, the proposed system reduces both offloading latency and bandwidth consumption while
maintaining object detection accuracy. Apicharttrisorn et al. [9] propose MARLIN, a lightweight
object detection and tracking framework for AR. Instead of running a computationally expensive
DNN on each frame, it initiates the DNN execution on the initial frame and then assesses if there
are significant scene changes using a change detector specifically designed to identify alterations
in the background. If such frame changes are not detected, MARLIN opts for a more lightweight
tracking scheme, conserving computational resources while maintaining tracking accuracy. Guan
et al. [75] move one step further and propose DeepMix, which focuses on 3D object detection for
AR/MR, aiming to provide an efficient solution in this computationally demanding domain. Instead
of relying on computationally intensive DNN-based 3D object detection models for bounding box
inference, DeepMix offloads 2D RGB images to the edge for 2D object detection and then utilizes
the returned 2D bounding boxes in conjunction with depth data captured by headsets to estimate
3D bounding boxes. DeepMix was prototyped on a Microsoft HoloLens 2. Evaluation results show
that compared to existing methods based on 3D object detection, DeepMix not only enhances
detection accuracy but also considerably decreases end-to-end latency.

User Inputs. Capturing user inputs in an accurate, intuitive, and user-friendly manner is another
important task in AR/VR/MR. Existing systems face challenges in capturing user-friendly inputs,
particularly in detecting subtle and low-effort finger gestures, which are more suitable for head-
mounted device controllers. Nguyen et al. [201] introduce HandSense, a system using capacitively
coupled electrodes to precisely capture and recognize micro-finger gestures for interaction with
head-mounted devices. They develop an electrode placement configuration on fingertips that min-
imizes the need for extensive hand movements and utilize several DNN-based methods to recog-
nize the gestures. Experimental results show that HandSense is able to achieve 97% accuracy in
recognizing 14 gestures performed by 10 subjects. As another line of research, in interactive VR
applications, conventional techniques have limitations as they cannot capture the upper face of
users, which is mostly occluded by the head-mounted display. To address this limitation, Chen
et al. [33] propose ExGSense, which detects and recognizes eye and mouth gestures as VR inputs.
This capability is made possible through the utilization of sparse near-eye biopotential signal mea-
surements combined with a DNN-based classifier. They evaluated their prototype with 42 facial
gestures, achieving 93% accuracy for user-specific and 77% for user-independent evaluation.

Performance Enhancement. Performance enhancement involves optimizing software and hardware
to reduce latency, increase processing speed, and improve resource management. Trinelli et al.
[251] present NEAR, a transparent AR processing system designed to reduce latency and enhance
performance when integrating AR features into streaming videos from lightweight IoT devices.
NEAR introduces a simplified SOCKS 5 proxy, a video decoder, and an encoder for the extraction
and reinjection of video streams into network flows. This setup enables offloading heavy computa-
tional tasks, like object detection, to edge devices, reducing the processing load on both source and
consumer devices. NEAR operates without requiring modifications to the IoT streaming devices
or client-side applications, ensuring a seamless integration of AR and other computationally in-
tensive functions directly within the network. Mobile DL frameworks often encounter limitations,
particularly related to multi-DNN GPU contention, which can significantly increase inference la-
tency. Unlike desktop GPUs, mobile GPUs cannot effectively implement multi-tasking approaches
due to their constraints. Heimdall, introduced by Yi and Lee [310], can efficiently manage the de-
mands of multiple DNN rendering tasks on mobile devices, ensuring minimal latency and optimal
performance in emerging AR applications. Heimdall introduces an innovative GPU coordinator
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that effectively handles multiple DNN rendering tasks on both the GPU and CPU by decomposing
complex DNNs into smaller units and adopting flexible scheduling techniques. The approach sig-
nificantly reduces the contention between DNNs and rendering tasks, which typically degrades
performance on mobile devices, thus enhancing overall system performance. Heimdall was proto-
typed on various mobile GPUs and AR applications, showing that it boosts frame rates from 12 to
30 frames per second and reduces worst-case DNN inference latency by up to 15X compared to
the baseline multi-threading approach. Liu et al. [173] introduce CollabAR, the concept of collabo-
rative image recognition into its design, capitalizing on users’ temporally and spatially correlated
images to enhance image recognition accuracy. The edge-assisted design of the system signifi-
cantly reduces end-to-end latency, ensuring seamless and efficient performance on commodity
mobile devices. CollabAR attains a recognition accuracy rate exceeding 96% even for images with
substantial distortions. FreeAR, presented by Apicharttrisorn et al. [8], enhances the performance
of mobile AR by introducing infrastructure-free AR experiences through collaborative time slic-
ing and efficiently distributing compute-intensive tasks across multiple user devices. In FreeAR,
all devices unite under a common coordinate system. The chosen primary device takes charge by
executing DNNs, enabling it to update the device pose, physical object locations, and 3D virtual
overlays, much like traditional AR systems. Meanwhile, secondary devices shift into a low-power
mode, where they track their locations within the converged coordinate system using lightweight
methods. With this approach, FreeAR can establish a low-power framework, enabling users to
seamlessly engage in AR experiences without relying on infrastructure support.

Omnidirectional AR. Last, omnidirectional AR refers to AR experiences that provide a 360-degree
view of the environment, allowing users to interact with and view augmented content from
any direction. In mobile AR applications, achieving accurate omnidirectional lighting is crucial
to avoid undesirable visual effects. However, accurately estimating omnidirectional lighting in
practical scenarios can be challenging, primarily due to the influence of environmental lighting
conditions and the dynamic nature of mobile users. Zhao and Guo [348] introduce Xihe, a
mobile AR application capable of real-time and precise omnidirectional lighting estimation by
employing a sphere-based point cloud sampling technique. Combined with 3D vision-based
lighting estimation pipeline, this sampling technique delivers significantly improved results over
the farthest point sampling techniques.

6 Discussion

In the field of AIoT, addressing issues such as bias and fairness, security and privacy, and legal
and ethical concerns is as crucial as tackling the technical challenges in sensing, computing, and
networking & communication, as well as domain-specific AloT systems, as we have covered in
previous sections. In this section, we provide a brief discussion on these issues.

Bias and Fairness in AloT. The integration of IoT and Al significantly broadens the functional capa-
bilities of AIoT. As a result, it raises the need for fairness considerations of AIoT since its extended
capabilities allow it to be widely deployed in daily life. Bias is referred to the systematic deviation
in data or algorithms used by AIoT that leads to unfair or discriminatory outcomes. Balasingam
et al. [12] address the challenge of balancing throughput and fairness in mobility platforms that al-
locate tasks to vehicles for applications such as food delivery and ridesharing. They show that
current ridesharing platforms often fail to ensure that riders from different neighborhoods re-
ceive equitable service. This issue arises when the algorithm prioritizes ride requests from certain
neighborhoods over others, typically favoring areas with higher demand or shorter and more prof-
itable trips. Given that, they introduce Mobius, a system engineered to balance high throughput
and fairness among customers by effectively managing the inherent tradeoffs in shared mobility,
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which enhances the overall performance and fairness of mobility platforms. Bias in AloT may
arise through FL, where models are trained across multiple edge devices, influenced by the hetero-
geneous resources and data distributions of these devices. Selialia et al. [226] observe that sample
feature heterogeneity, resulting from different feature representations at various devices, is a ma-
jor contributor to bias in FL. Their results show that existing bias mitigation techniques, such as
normalization, do not fully eliminate bias, with bias levels being proportional to the degree of
heterogeneity in sensor sampling features. Last, Bae and Xu [11] focus on biases in pedestrian
trajectory prediction models used in autonomous vehicles. They highlight that many DL models
trained on pedestrian data are biased, particularly against vulnerable demographics like children
and the elderly, who exhibit different walking patterns compared to the general adult population.
This bias can lead to higher prediction errors for these groups and increasing their risk of involve-
ment in vehicle crashes.

Security in AloT. The vulnerabilities inherent in AIoT pose critical security concerns. One of the
root causes is the limited resources of AloT devices, which makes it challenging to implement
robust security measures. For example, to make an effective balance between security needs with
resource limitations, Luo et al. [181] propose ShieldScatter, a lightweight solution to enhance IoT
security by utilizing battery-free backscatter tags. These tags create fine-grained multi-path propa-
gation signatures, allowing for the identification of legitimate users and the detection of attackers.
ShieldScatter provides a cost-effective method that does not require expensive hardware modifica-
tions, offering a practical security solution for resource-constrained IoT devices. As another exam-
ple, in contact-free smart sensing devices, limited storage resources necessitate the use of cloud
storage. However, data stored in the cloud is particularly vulnerable due to the open nature of cloud
environments, making it susceptible to potential third-party attacks. To mitigate these risks, Mei
et al. [190] introduce a novel Cloud-Edge-End cooperative storage scheme that leverages the dis-
tinct characteristics of the cloud, edge, and endpoint layers. This scheme employs a strategically
designed data partitioning strategy, which involves storing sensory data across the three layers
separately. By doing so, it increases the difficulty of potential security breaches while offering ro-
bust protection against both internal and external attacks. To protect from malicious attacks in
IoT environment, several DL-based detection mechanisms are proposed [59, 119, 142]. Khan et al.
[119] investigate the robustness of SplitFed learning—a hybrid of split learning and FL—against
model poisoning attacks, where attackers deliberately inject fake data into the network. SplitFed
combines the parallel computation efficiency of FL with the resource efficiency and improved pri-
vacy of split learning. The study shows that SplitFed, due to its smaller client-side model portions,
is inherently more robust to model poisoning attacks compared to FL. Li et al. [142] focus on phys-
ical adversarial attacks on DL-based Wi-Fi sensing systems. This attack manipulates Wi-Fi packet
preambles to subtly alter the CSI, thereby influencing the DL models that rely on this data, without
interrupting normal communication. Demonstrating high success rates of attack in activity recog-
nition and user authentication, this study exposes significant security vulnerabilities in current
Wi-Fi sensing systems. Last, Dong et al. [51] explore a critical security vulnerability in modern
mobile devices that utilize dynamic refresh rate switching to optimize power consumption. The
authors present an innovative attack vector named RefreshChannels, where two colluding apps
modulate the display’s refresh rate to covertly transmit sensitive information, bypassing the oper-
ating system’s sandboxing and isolation measures. They also propose countermeasures to mitigate
the RefreshChannels attack such as restricting refresh rate API access, limiting refresh rate change
frequency, introducing delays and randomization, and detecting abnormal refresh rate patterns.

Privacy in AloT. Since AloT could gather a diverse array of data such as an individual’s location,
personal healthcare record, behavior patterns, and biometric information that is rich in personal
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information, the collection and processing of such personal data can raise significant privacy con-
cerns. To protect the privacy of individuals, various regulations have been implemented. The Euro-
pean Union (EU) General Data Protection Regulation offers comprehensive data protection rules
for handling EU citizens’ personal data [55]. In the United States, the California Consumer Privacy
Act outlines consumer rights regarding personal information collected by businesses, whereas
the Health Insurance Portability and Accountability Act stringently controls the handling of per-
sonal healthcare data [202, 203]. Alongside these legal frameworks, numerous research efforts are
underway to tackle privacy-related challenges. Abadi et al. [1] introduce DP, a technique that
injects noise into data to preserve sensitive personal information. They introduce DP into DL
model training with their proposed DP-SGD method, which has proven to maintain high accuracy
while effectively preserving privacy. Fully homomorphic encryption is another privacy-preserving
mechanism which enables computation to be performed over encrypted data. Fully homomor-
phic encryption ensures that original data remains hidden and is not decrypted during processing.
However, due to its significant computational demands, AloT is exploring alternatives like par-
tially homomorphic encryption and somewhat homomorphic encryption to reduce computational
overhead. Shafagh et al. [227] propose Pilatus, a partially homomorphic encryption scheme for
IoT while sharing the data with the cloud. Pilatus protects data privacy by ensuring that the cloud
stores only encrypted data while still enabling operations like summation. Mo et al. [195] introduce
PPFL, a framework that leverages trusted execution environments to prevent private information
leakage in FL scenarios. Although FL enables decentralized training across multiple devices with-
out aggregating user data, model updates can still leak sensitive information, posing significant
privacy risks. To address this, PPFL employs trusted execution environments to securely process
model updates, ensuring that both local training on clients and secure aggregation on servers
are protected from potential adversaries. Singh et al. [237] introduce SnoopDog, a framework de-
signed to address the privacy issues arising from hidden wireless sensors, such as secret cameras
and microphones. SnoopDog identifies Wi-Fi-based sensors monitoring users by detecting causal
patterns between trusted sensor data like IMU readings and Wi-Fi traffic. Although the current
implementation of SnoopDog is limited to Wi-Fi-connected devices, future enhancements could
extend its capabilities to other wireless communication standards like Zigbee or Bluetooth. Con-
ventional privacy-preserving ML methods often face significant latency issues due to computation
overhead of encryption processes. To address this issue, Chien et al. [39] introduce Enc?, a hybrid
method that combines encoding and homomorphic encryption to enhance privacy-preserving ML
for resource-constrained IoT devices. The proposed method performs most of the computations on
plaintext, thus reducing latency and shifting the encoding burden from the IoT device to the cloud.
Last, Corbett et al. [41] introduce BystandAR, which addresses the privacy concerns posed by AR
devices that unintentionally capture the visual data of bystanders. BystandAR leverages eye gaze
and voice indicators to differentiate between subjects and bystanders, protecting the bystander’s
privacy in real time without offloading data to external servers.

Legal and Ethical Concerns in AloT. Finally, AIoT must adhere to ethical norms and legal obliga-
tions. Mittelstadt [194] discusses the intersection of ethical issues and the deployment of health-
related IoT technologies, emphasizing the importance of designing these technologies in ways that
are both ethically responsible and legally compliant. It also underscores the need for responsible
design and deployment of IoT technologies, ensuring they are trustworthy, respect user rights,
and enhance healthcare delivery without compromising ethical standards. Gill [72] highlights the
importance of addressing ethical dilemmas in the adoption of autonomous vehicles. The study
focuses on the ethical dilemma of programming autonomous vehicles to make decisions in situa-
tions where harm is unavoidable, such as whether to protect passengers or pedestrians. Despite
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industry and policymakers’ tendencies to downplay these ethical issues, the findings underscore
the necessity of addressing these dilemmas to ensure the successful deployment and acceptance of
autonomous vehicles. Bouderhem [20] proposes a comprehensive ethical framework to govern the
use of Al in healthcare. This framework is based on values such as human dignity, fairness, trans-
parency, accountability, and inclusivity. Bouderhem [20] also discusses the role of the EU’s General
Data Protection Regulation and the Al act as models for creating robust regulatory frameworks.

7 Concluding Remarks

In this survey, we presented a comprehensive review of AloT research. We organized the AloT
literature into a taxonomy that includes four categories: sensing, computing, networking & com-
munication, and domain-specific AloT systems, and reviewed key topics within each category. It
is our hope that our survey serves as a foundational reference, enabling researchers and practi-
tioners to gain a comprehensive understanding of AloT and inspiring further contributions to this
exciting and important field.
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